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Abstract

We present a rational expectations model of credit-driven crises, providing a new perspective

to explain why credit booms can lead to severe financial crises and aftermath slow economic

recoveries. In our model economy, banks can operate in two types of business. They are

sequentially aware of the deterioration of fundamentals of the speculative business and decide

whether to continue credit extension in that business or liquidate capital and move into the

traditional business. However, because individual banks face uncertainty about how many of

their peers have been aware and do not internalize the impact of their own timing strategy on

other banks, they rationally choose to extend credit in the speculative business for a longer time

than is socially optimal, leading to an over-delayed crisis and consequently more banks being

caught by the crisis. This in turn renders the financial crisis more severe and the subsequent

economic recovery slower. Extending to a standard textbook macroeconomic growth setting,

our model also generates rich dynamics of economic booms, slowdowns, crashes, and recoveries.
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“When the music stops, in terms of liquidity, things will be complicated. But as long as the music is

playing, you’ve got to get up and dance. We’re still dancing.”

Charles Prince, the former chairman and CEO of Citigroup

“Those who leave the dance too early leave money on the table and initially look incompetent. However,

a fully committed player like Mr. Prince finds that he can’t escape when the building’s on fire and everyone

wants out at the same time...As we’ve seen, hardly anybody knows how to call that timing very well.”

Quoted from Wagner and Rieves (2009)

1 Introduction

The 2007-2009 global financial crisis has sparked revived interest in credit and financial crisis cycles.

There is now substantial empirical evidence from academic research on this topic.1 The general

pattern revealed by the evidence is that credit booms presage financial crises and the magnitude of

a boom can predict the severity of the subsequent crisis and the length of the aftermath recession.

From the theoretical perspective, however, some natural questions remain: why would agents,

whether firms, households, or intermediaries, take on so much debt (credit) in the first place if they

are aware of the inevitable large risk that lies ahead? Why does a credit boom often last a very

long time before busting if the credit boom is ineffi cient? For instance, the subprime mortgage

boom, one of the major causes of the 2007-2009 financial crisis, experienced a prolonged period of

rapid acceleration from 2000 to 2006, surging from $100 billion to $600 billion in the process. The

market then suddenly collapsed during the 2007-2009 financial crisis to less than $20 billion.

In this paper, we present a rational expectations model of credit-driven crises, explaining why an

ineffi cient credit boom can persist and consequently lead to a severe financial crisis and aftermath

slow economic recovery. In our model, credit expansions and financial crises evolve like a game of

musical chairs. Credit expansion persists as individual players have incentive to exit right before

the crash, neither too early nor too late, though all players are aware that some of them will

inevitably be caught by the crisis in the end. That is, individual banks rationally choose to delay

their response to bad news about the economy by continuing credit extension. However, this delay

in timing generates negative externality across banks, which is socially ineffi cient.

We first present a baseline model – an investment game in a production economy with the

friction of asynchronous awareness as in Abreu and Brunnermeier (2002, 2003). In our model

economy, there are two types of business: speculative business and traditional business. The

speculative business has higher profitability but is more fragile by nature. All banks initially operate

1See, e.g., Schularick and Taylor (2012), Baron and Xiong (2017), Hu (2017), Krishnamurthy and Muir (2017),
López-Salido, Stein, and Zakrajšek (2017), Gao, Sockin, and Xiong (2020), Greenwood et al. (2021), Baron, Verner,
and Xiong (2021), and Krishnamurthy and Li (2021).
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in the speculative business sector. The status of the speculative sector depends on its fundamentals

and the number of banks operating in it. The fundamentals are good enough initially but deteriorate

gradually after a negative shock. Banks learn of the negative shock sequentially and decide when

to exit the speculative sector. For a given fundamental value, if more than a critical proportion of

banks have exited, the speculative sector will collapse – the crisis occurs. Once the crisis occurs,

the speculative sector will no longer generate profits. Moreover, banks that exit before the crisis

(survival banks) can retrieve their full loan principal and thus are able to reallocate and reinvest in

the traditional sector for sure, while banks that exit later and thus get caught by the crisis (failed

banks) can only recover an endogenous fire-sale liquidation value for their loans. Failed banks thus

can reinvest in the traditional sector only with a probability, which is an increasing function of the

liquidation value. The equilibrium of the baseline model is characterized by the optimal waiting

strategy for a bank – the length of delay between the awareness of the negative shock and the

action of exiting. We study two equilibria: the social planner’s second-best constrained equilibrium

and the decentralized competitive equilibrium.

For the second-best constrained equilibrium, the social planner cannot observe the time of the

shock either but can “coordinate”all banks to choose the same waiting length. The social planner

faces the following tradeoff. On the one hand, an increase in the waiting time delays the crisis,

which means all banks can receive the higher profit flow from the speculative sector (than that from

the traditional sector) for a longer time. On the other hand, if banks stay longer in the speculative

sector, the fundamentals will deteriorate more when the crisis strikes and thus more banks will get

caught by the crisis, lowering the liquidation value for every caught bank. With the above tradeoff,

the social planner has a unique optimal delay. For the decentralized competitive equilibrium, an

individual bank faces a similar tradeoff. However, unlike the social planner who recognizes that the

timing strategy of banks endogenously impacts the crisis arrival time and thus the fire-sale price,

individual banks take the fire-sale price or the loan recovery value as given. The tradeoff also gives

a unique optimal waiting time for individual banks. In comparing the two equilibria, we show that

individual banks exit too late in the decentralized equilibrium relative to the second-best optimum.

The fact that individual banks do not internalize the impact of their timing strategy on the fire-sale

price results in their over-waiting in exiting.

We then study a full model with both entry and exit, the aim of which is to characterize the

cycle of credit booms and crises. Specifically, we model the cycle of how banks start from the

traditional business, enter the speculative business, and then exit it and re-enter the traditional

business. Initially, all banks are operating in the traditional sector. The speculative sector begins

to generate a high profit flow after a positive shock hits its fundamentals. The information of

the shock arrives at banks sequentially (like in the baseline model). All banks know that the good

economic fundamentals of the speculative sector can last only for a certain period. Therefore, banks
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need to decide when best to enter and when best to exit the speculative sector. The equilibrium

of the full model is characterized by the optimal length of time a bank stays in the speculative

sector. As in the baseline model, there exists a unique equilibrium for both the second-best and

the decentralized case. In particular, we show that individual banks stay in the speculative sector

too long in the decentralized competitive equilibrium compared with the second-best optimum.

Finally, we extend our model to a macroeconomic growth setting with both entry and exit.

The macroeconomic model explicitly examines the capital accumulation and consumption decision.

When the fundamentals of the speculative sector are initially deteriorating, the credit boom con-

tinues but the growth of the aggregate economy slows down. After a suffi cient number of banks

pull out, the speculative sector starts to decline and the growth of the aggregate economy slows

down further. Once it commences, the contraction of the speculative sector occurs at an increasing

speed. The economy heads toward the financial crisis at an accelerated pace after a long period of

slowly deteriorating fundamentals.2 The rich dynamics of booms, slowdowns, crashes, and recov-

eries of our macroeconomic model demonstrates that asynchronous awareness could potentially be

a powerful transmission and propagation mechanism for macroeconomic shocks.

We analyze two policy measures that can potentially mitigate or eliminate the ineffi ciency of the

decentralized equilibrium. One is the credit policy (by increasing refinancing costs for failed banks)

and the other is the tax policy (by levying capital tax on failed banks). We show that there exists

a unique interest rate (credit policy) as well as a unique tax rate (tax policy) that implements the

second-best optimum. The intuition for the two policies is similar. Both involve a cost or penalty

on failed banks, which makes individual banks have incentives to reduce the chance of being caught

by the crisis by choosing to stay shorter in the speculative sector.

Related literature. Closely related to our paper is the work of Abreu and Brunnermeier (2002,

2003), who show in an endowment economy model that asynchronous awareness results in not only

asynchronous responses to the shock but also a delay in the responses. In a general-equilibrium

economy with production, our paper further shows that such a delay in the responses can be an

over-delay, which is ineffi cient from the perspective of the social planner. In other words, the work

of Abreu and Brunnermeier (2002, 2003) explains why a bubble (boom) can persist, while our paper

explains why an ineffi cient boom can persist. More importantly, building on their work, we apply

the timing game to a business cycle model, which offers insights on why an ineffi cient credit boom

can persist, causing an over-delayed crisis with the consequence of a more severe financial crisis

and a slower economic recovery. On the methodology front, our paper is the first to embed the

microeconomic friction à la Abreu and Brunnermeier (2002, 2003) in a standard macroeconomic

2 In the 2007-2009 crisis, the subprime mortgage defaults had started to increase since the first quarter of 2007
when the S&P/Case-Shiller house price index recorded the first year-on-year decline since 1991. Yet, a full-bloom
crisis did not strike until the second half of 2008.
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model. With capital accumulation and risk-aversion preference, modeling the timing game becomes

much harder. Yet we are able to make the model highly tractable and extendable. Since asynchro-

nous awareness is common in many important economic environments such as bubbles, currency

attacks, and bank runs, the macroeconomic model developed here provides a first step to study the

macroeconomic impact of asynchronous awareness in these events.

Our paper studies the optimal exit timing of firms (see, e.g., Dixit, 1989; Chen, Miao and

Wang, 2010; Bolton, Wang and Yang, 2019) in a macroeconomic model setting (as in Brunnermeier

and Sannikov, 2014; Liu, Mian and Sufi, 2022; Bigio and Sannikov, 2021). A few papers in the

literature follow the approach of Abreu and Brunnermeier (2003) and study asynchronous awareness

in different directions and contexts. Doblas-Madrid (2012) aims to endogenize the asset prices in

Abreu and Brunnermeier (2003). He and Manela (2016) examine information acquisition in rumor-

based bank runs, by adding uncertainty about the capacity of the bubble. Unlike these contributions

where the model economy is still an endowment (exchange) economy, ours is a general-equilibrium

production economy with the emphasis on the welfare implications.

Our paper belongs to a broader literature that studies the causes of financial crises. Some

behavioral theories suggest that credit booms might lead to recessions or financial crises (see, e.g.,

Minsky, 1977, 1986; Kindleberger, 1978; Bordalo et al., 2018; Bordalo et al., 2020).3 Two branches

of rational expectations models are related to our paper. One branch is the theory based on

financial frictions pioneered by Bernanke and Gertler (1989) and Kiyotaki and Moore (1997), which

emphasizes the amplification and propagation mechanisms of an exogenous fundamental shock. The

other branch of theory emphasizes that macroeconomic fluctuations and crises in particular can

be self-fulfilling even in the absence of fundamental shocks (e.g., Cass and Shell, 1983; Cooper

and John, 1988; Benhabib and Farmer, 1994, Cole and Kehoe, 2000; Gertler and Kiyotaki, 2015;

Martin and Ventura, 2012; Miao and Wang, 2018; Schaal and Taschereau-Dumouchel, 2018; and

Benhabib, Liu, and Wang, 2019). The coordination game of timing in our paper is closely related to

the particular literature on self-fulfilling beliefs in coordination games under frictions of imperfect

information or imperfect communication;4 a leading example of this particular literature is models

of sentiment-driven fluctuations (e.g., Angeletos and La’O, 2013; Benhabib, Wang, and Wen, 2015;

Benhabib, Liu, and Wang, 2016). The financial crisis in our model is driven by both fundamentals

and coordination and our model features a unique equilibrium. In other words, the financial crisis is

triggered by a bad shock to fundamentals but amplified by the coordination problem. In particular,

the coordination problem in our model concerns timing. The insight of amplification through timing

3Unawareness and over-optimism lead both borrowers and lenders to neglect crash risk; see, e.g., Greenwood and
Hanson (2013), Cheng, Raina, and Xiong (2014), and Baron and Xiong (2017).

4Frankel and Pauzner (2000) and He and Xiong (2012) study a dynamic game by adding a friction as in Calvo
(1983). These papers assume that agents must make asynchronous choices, a Calvo-like friction. Asynchronous choice
is merely a byproduct of asynchronous awareness in our paper like in Abreu and Brunnermeier (2002, 2003).
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has not been shown in the extant literature.

Our paper is related to a growing literature that highlights the role of pecuniary externality

in generating excessive financial fragility (see, e.g., Geanakoplos and Polemarchakis, 1986; Shleifer

and Vishny, 1992; Lorenzoni, 2008; Farhi, Golosov, and Tsyvinski, 2009; Jeanne and Korinek, 2010;

Stein, 2012; Dávila and Korinek, 2018). Brunnermeier, Eisenbach, and Sannikov (2013) provide

a survey. In our model, fire sales occur in an environment with synchronization problems. The

externality concerns lenders’timing choice of credit extension and operates through affecting the

number of borrowers that are under fire sales at the crisis time (“extensive margin”); in contrast, the

externality in the extant literature concerns borrowers’level choice of leverage and operates through

affecting the quantity of asset (debt) under fire sales per borrower at the crisis time (“intensive

margin”). The different channels of operation may imply different policy interventions. More

importantly, the timing dimension of externality in our paper has various forces with different signs.

One key contribution of our paper is to analytically decompose the externality and characterize the

sign and magnitude of each force, connected to the work of Dávila and Korinek (2018).

Our paper is also related to some studies on boom and bust cycles through information channels.

Veldkamp (2005) and Van Nieuwerburgh and Veldkamp (2006) emphasize that information flow is

endogenous and varies with the level of economic activity. Fajgelbaum, Schaal and Taschereau-

Dumouchel (2017) show uncertainty traps: high uncertainty deters investment because of the “wait-

and-see”effect while agents learn from the actions of others. As a result, a temporary shock can

generate a long-lasting recession. Schaal and Taschereau-Dumouchel (2022) show that rational

herding can generate endogenous aggregate fluctuations, where technological innovations arrive

with unknown qualities and agents receive dispersed information about the technology fundamental.

Whereas the boom and bust cycle in our model is also generated by information friction, we

emphasize the timing dimension of information friction and the externality associated with it.

The paper is organized as follows. In Section 2, we present the baseline model. In Section 3, we

study a full model with both entry and exit. In Section 4, we extend the model to a macroeconomic

growth framework. In Section 5, we analyze policy implications. Section 6 adds an analysis on the

model microfoundation. Section 7 concludes.

2 The baseline model

Our model economy consists of two types of business (sectors) in which banks can operate: specu-

lative business and traditional business. The former, corresponding to “speculative investment”in

Minsky’s narratives, includes business such as subprime mortgage lending, CDS trading, and other

shadow banking activities, while the latter can be normal commercial lending. We will model the

cycle of how banks start from the traditional business, enter the speculative business, and then exit
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it and re-enter the traditional business. For clarity of exposition, in this section, we focus on the

second half of the cycle – banks’decisions to exit the speculative business and to (re)enter the

traditional business. In the next section, we will study the first half of the cycle.

2.1 Setting

Time is continuous starting from t = 0. The risk-free net interest rate is r. There is a continuum

of banks with unit mass. These banks are currently investing in the speculative business sector

through loans to firms within that sector. We will provide a more detailed description of the bank-

firm relationship in Sector 6. For now, we assume that each bank is matched with one firm. If

a bank decides to exit the speculative sector by withdrawing its loan, the counterparty firm must

close its business and liquidate its assets to repay the loan.

Payoff structure. The payoff of a bank in the speculative sector at time t depends on the

fundamentals of the sector, θ (t), and the measure of active banks in the sector, ω (t). Specifically,

the payoff flow (e.g., loan interests) of a bank in the speculative sector is given by

c (t) =

{
cH

0

if θ (t) + β · ω (t) ≥ α (no crisis)
otherwise

, (1)

where cH > r, β > 0 is a parameter representing the degree of (production) complementarity

among firms in the sector, and α is a constant satisfying α > β. The condition θ (t) + β · ω (t) ≥ α
is the no-crisis condition, that is, as long as the economic fundamental θ (t) is good enough or the

measure of banks operating in the speculative sector, ω (t), is high enough, there is no crisis for

the speculative sector. The payoff structure reflects the idea that the loan performance of a bank

depends on the macroeconomic state as well as on the number of other banks extending loans (e.g.,

Cooper and John (1988), Morris and Shin (2004), and Bebchuk and Goldstein (2011)). We will

provide a microfoundation for the payoff function (1) in Section 6.

Fundamentals and information. The fundamental value (the macroeconomic state), θ (t),

follows an exogenous process. We assume that θ (t) is initially high enough such that there is no

crisis for the speculative sector. But at t = t0 > 0, a shock hits the sector. After the shock,

θ (t) gradually declines, that is, θ
′
(t) < 0 for t ≥ t0. The arrival time of the shock, t0, follows an

exponential distribution, with probability density function (pdf) φ(t0) = λe−λ(t0−m) in the support

t0 ∈ [m,+∞) (the parameter m ≥ 0 will be explained in detail in Section 3); in the baseline

model we can simply set m = 0. Crucially, as in Abreu and Brunnermeier (2002, 2003), t0 is not

observable by banks. Nevertheless, after t0, banks are sequentially informed (aware) of the event

that the sector has been hit by the shock. The information spreads among banks over [t0, t0 + η],

following a uniform distribution. Ex ante, any bank is equally likely to become aware at any
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t ∈ [t0, t0 + η]. Since t0 is random, an individual bank does not know its position in the queue (i.e.,

how many other banks are informed before or after it is informed). Sequential awareness can also

be interpreted as a dispersion of beliefs or opinions as in Abreu and Brunnermeier (2002, 2003).

Liquidation value. All banks initially invest in the speculative business sector. After receiving

private information about the shock time t0, banks can choose to exit. Concretely, if a bank decides

to exit (i.e., not to roll over its loan any longer) at time t, its firm liquidates assets (totally one

unit) and repays the principal of the bank loan. As long as crisis has not yet struck at time t, the

assets can be sold in an orderly way to investors in a related sector at a constant price of 1. In

other words, if a bank exits before the crisis hits, it is able to get its full loan principal, 1, paid

back. However, once the crisis hits, banks that are still active in the sector are “caught”by the

crisis and their firms have to liquidate assets at fire-sale prices. The fire-sale price function is a

downward-sloping curve. In sum, the liquidation value for a firm is given by

L =

{
1

` = g
(
ωC
) if no crisis

if in the crisis
,

where g (·) is the fire-sale price function with g′ ≤ 0, and ωC , an endogenous variable, denotes

the total measure of firms under fire sales at the crisis time.5 The micro-foundation of g (·) is the
following. When the crisis occurs, the assets have to be sold to outside investors in a less related

sector, which has a less effi cient technology to use the assets. The technology is with (weakly)

decreasing returns to scale. Specifically, the production function of the outside investor sector is

G (ω) with the marginal productivity being G′ (ω) = g (ω).

Reinvestment. After exiting and obtaining their liquidation value, both the banks that suc-

cessfully exit before the crisis (referred to as “survival banks”) and those banks that are caught

by the crisis (referred to as “failed banks”) can enter the traditional business sector by reinvesting

their liquidation value in an investment opportunity – a project of a fixed size. The payoff of the

project is a continuous, constant cash flow process cL in perpetuity, where cL ∈
(
r, cH

)
; that is, the

project’s present value (PV) is cL

r > 1. The cost of this investment is 1.6 While a survival bank

can certainly afford the investment cost, a failed bank with liquidation value L < 1 will have to

refinance. The probability of successful refinancing (to reach the required capital 1) is p (L) ∈ [0, 1)

for L < 1, where p′ (·) > 0. The probability p (L) can also be interpreted as the success probability

of restructuring a failed bank. The expected present value (PV) from reinvesting for a bank with

5 In reality, banks themselves face the risk of being run by their short-term debtholders if their asset performance is
in question. If such runs occur or are expected to occur, banks would be forced to fire sell (Liu, 2016, 2023; Eisenbach,
2017). This plays a disciplining role (Calomiris and Kahn, 1991; Diamond and Rajan, 2001; Eisenbach, 2017).

6Without changing the model results qualitatively, we assume that the interest incomes received by banks have
been consumed or distributed to bank investors. Alternatively, we can assume that the interest incomes are non-
storable. The consumption decision is endogenous in the macroeconomic growth model in Section 4.
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liquidation value L hence is given by

Π (L) =

{
cL

r

L (1− p (L)) +
[
cL

r − (1− L)
]
· p (L) = L+

(
cL

r − 1
)
· p (L)

if L = 1

if L < 1
. (2)

The second line is the payoff for a failed bank when its L is lower than 1, i.e., it will not be able to

reinvest with probability 1 − p (L), in which case its payoff is the liquidation value L, and it will

be able to reinvest with probability p (L), in which case its payoff is cL

r net of the refinancing cost

1− L (meaning the borrowing rate is the risk-free rate r). The second line is intuitively rewritten
in terms of the new project’s net present value (NPV), c

L

r − 1.

Figure 1 summarizes the setup of the baseline model.

Figure 1: The setup of the baseline model

Note: The speculative sector has a higher cash flow than the traditional sector (cH > cL) but is more fragile

with a crisis. Figure 1 illustrates the choices of three typical types of banks. Bank 1 exits the speculative

sector early, while Bank 2 exits a bit late but still before the crisis, enabling it to obtain the higher cash flow

cH for a longer time. In contrast, Bank 3 exits too late and is caught by the crisis, leading to fire sales at an

endogenous fire-sale price `. So Bank 3 can only reinvest in the traditional sector with a probability p (`).

To have closed-form solutions, we use linear specifications throughout the paper. 1) The funda-

mental process is θ (t; t0) =

{
α for t ≤ t0
α− κ (t− t0) for t > t0

, where κ > 0. This means that the coordi-

nation problem of the macroeconomy arises only after t = t0 (i.e., the period in which the fundamen-

tal θ is suffi ciently weak). 2) The fire-sale price function is g (ω) =

{
1

1− γ · (ω − ω0)

when ω ≤ ω0

when ω > ω0

,

where parameters γ > 0 and ω0 > 0. The only purpose of introducing the intercept ω0 is to fa-
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cilitate characterizing the condition for the non-corner solution of the competitive equilibrium (see

Proposition 1 later). Note that both the competitive equilibrium and the planner’s second-best

equilibrium will be subject to this same fire-sale price function. 3) p (L) = L.

We make two parameter assumptions.

Assumption 1 Payoff (cash flow) parameters satisfy cH > cL > r.

Assumption 2 Assume that cH < γ κβ

(
cL

r − 1
)
.

Assumption 2 says that the interest flow cH in the speculative business sector is not too high

relative to the full reinvestment value in the traditional business sector, cL

r . The role of this

assumption will be clear in Proposition 2.

Before proceeding to solve the equilibrium, we consider a special case of Assumption 1.

Assumption 1’Assume cH > cL > r, where cL → 0, r → 0, and cL

r ≡ Σ is a constant.

The only purpose of considering this special case of Assumption 1 is to make r → 0 (so the

discount factor term e−rt in the analysis can be neglected) and at the same time to guarantee that
cL

r is a finite number. This way, the presentation of the model equilibrium in the next subsection

will become much clearer and cleaner. In the next subsection, we conduct the analysis under

Assumption 1’. In Appendix A, we conduct the analysis under the general Assumption 1 and show

all the results carry over. Moreover, in the full model of Section 3, we use Assumption 1 and again

confirm that all results derived under Assumption 1’apply to the model under Assumption 1.

2.2 Equilibrium

We are interested in a symmetric equilibrium, in which all banks use the same (symmetric) strategy

of waiting period after receiving information. That is, every bank decides to wait for a time interval

τ after being informed before exiting. Denote the arrival time of the crisis by t0 + ζ.

The equilibrium waiting strategy τ determines the crisis time ζ and thereby the fire-sale price `.

To facilitate our analysis of both the decentralized equilibrium and the social planner’s second-best

equilibrium, we first find out the properties of ζ and ` for a given τ .

Crisis time ζ as a function of waiting strategy τ . Given τ , the measure of banks that

have exited by time t is x (t) ≡ t−(t0+τ)
η for t ≥ t0 + τ . The measure of active banks, ω (t), is

given by ω (t) = 1 − x (t). Hence, the crisis condition θ (t) + β · ω (t) ≥ α implies ω (t) ≥ α−θ(t)
β

or x (t) ≤ 1 − α−θ(t)
β . Denote S (t) ≡ 1 − α−θ(t)

β , which can be referred to as the resilient function

of the sector. That is, as long as x (t) ≤ S (t), there is no crisis. Given θ (t) = α − κ (t− t0),
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we can calculate S (t) = 1 − κ
β (t− t0). Since the crisis occurs at t = t0 + ζ, it follows that

x (t0 + ζ) = S (t0 + ζ), which yields

ζ =
τ + η

1 + κ
βη
. (3)

Lemma 1 The function ζ (τ) is given by (3), which has the property that dζ
dτ = 1

1+κ
β
η ∈ (0, 1).

Moreover, τ has the domain τ ∈
[
0, ζ̄
]
and ζ is bounded by ζ ∈

[
ζ, ζ̄
]
, where ζ = η

1+κ
β
η and ζ̄ = β

κ .

The ζ and ζ̄ represent the crisis times when banks choose to exit immediately and never exit,

respectively. In the latter case, since the fundamental value declines over time, the crisis will still

occur even if no banks voluntarily exit. Figure 2 illustrates Lemma 1.

Figure 2: Determine the crisis time (ζ) for a given waiting strategy (τ)

Note: The exit function x (t) represents the number of banks that have exited the speculative sector by time

t, given the waiting strategy τ . The resilient function S (t) represents the sector’s capacity to withstand

banks’exits, which decreases over time because of the declining fundamentals of the sector. The crisis occurs

when the two lines intersect, that is, ζ solves x (t0 + ζ) = S (t0 + ζ), which also implies ζ ∈
[
ζ, ζ̄
]
.

Liquidation value ` as a function of crisis time ζ. When the crisis occurs, the total

measure of firms under fire sales is given by

ωC = 1− ζ − τ
η

, (4)

which is an increasing function of τ or ζ by (3). Hence, we obtain ` = g
(
ωC
)

= 1− γ ·
(
ωC − ω0

)
,

which, by plugging in (3) and (4), yields

` ≡ ` (ζ) = 1− v · (ζ − ζ0) , (5)

where v ≡ γ κβ and ζ0 ≡ ω0
β
κ . Lemma 2 follows.
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Lemma 2 The liquidation value or the loan recovery value for a bank caught by the crisis is given

by (5), which has the properties that ` (ζ) < 1 and d`
dζ = −v < 0 on the domain ζ ∈

[
ζ, ζ̄
]
.

The loan recovery value depends on how soon the crisis occurs. The sooner it occurs, the higher

the loan recovery value. The parameter v measures the decline speed of the recovery value over

time. Intuitively, if the crisis is delayed for longer, more banks will be caught by the crisis in

equilibrium and hence the fire-sale price for every caught bank becomes lower.

2.2.1 The decentralized competitive equilibrium

The decentralized equilibrium is characterized by the pair (τ∗, ζ), where τ∗ is the symmetric waiting

time for each individual bank and t0 + ζ is the time at which the crisis occurs.

The posterior belief about t0. Since the shock time t0 is unobservable, a bank receiving

information at time ti only knows t0 ∈ [ti − η, ti]. The posterior pdf of t0 conditional on the

information t0 ∈ [ti − η, ti] from the perspective of bank ti is given by

φ (t0|ti) =
φ (t0) 1

η∫ ti
ti−η φ (s) 1

ηds
=
λeλ(ti−t0)

eλη − 1
, (6)

by recalling that the prior pdf of t0 is φ(t0) = λe−λ(t0−m). Similarly, the conditional cumulative

distribution function (cdf) of t0 from the perspective of bank ti is given by

Φ (t0|ti) =

∫ t0

ti−η
φ (s|ti) ds =

eλη − eλ(ti−t0)

eλη − 1
. (7)

The above posterior pdf and cdf depending only on ti− t0 is due to the memoryless property of an
exponential distribution.

The hazard rate of the crisis. Suppose banks believe the crisis will occur at time t0 + ζ.

Denote by τ i = t − ti the time elapsed since the bank ti received information. From bank ti’s

perspective, the crisis will occur at ti + τ i if and only if t0 + ζ = ti + τ i. That is, the crisis will

occur at ti + τ i only if t0 occurs at t0 = ti + τ i − ζ. Therefore, the hazard rate that the crisis will
occur at time ti + τ i is given by

h (ti + τ i|ti, τ i) =
φ (ti + τ i − ζ|ti)

1− Φ (ti + τ i − ζ|ti)
=

λ

1− exp [−λ (ζ − τ i)]
. (8)

From the perspective of bank ti, the hazard rate of the crisis depends only on its waiting time τ i,

not on the absolute time ti.

The optimal timing to exit. In solving the optimal waiting strategy, an individual bank
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takes the equilibrium crisis time ζ as given. Individual bank ti’s optimization problem is

max
τ i


Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])︸ ︷︷ ︸

probability of survival

(
τ ic

H + Σ
)︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τ i
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

(
xcH + Π (`)

)︸ ︷︷ ︸
payoff in the case of failure

dx

 , (9)

where ` = ` (ζ) is given in (5) and an individual bank takes ` as given, and Π (`) = `Σ by (2).

The terms f and Pr in (9) are given by f (t0 + ζ = ti + x) = φ (t0 = ti + x− ζ|ti) = λeλ(ζ−x)

eλη−1
and

Pr (t0 + ζ ∈ (ti + τ i, ti + ζ]) = Φ (t0 = ti|ti) − Φ (t0 = ti + τ i − ζ|ti) = eλ(ζ−τi)−1
eλη−1

, by considering

that the conditional pdf φ (t0|ti) and cdf Φ (t0|ti) are given in (6) and (7).

We explain (9). The individual bank which receives information at ti knows that the crisis will

occur at the earliest at t = t+i and at the latest at t = ti + ζ and hence that the crisis arrival

time must fall into the interval t0 + ζ ∈ (ti, ti + ζ]. (In the proof, we will distinguish the two

cases of ζ < η and ζ ≥ η.) Thus, when the individual bank chooses its exiting time as ti + τ i, it

knows that there are two possibilities: t0 + ζ ∈ (ti, ti + τ i]∪ (ti + τ i, ti + ζ]. For the first possibility

t0 + ζ ∈ (ti + τ i, ti + ζ], the crisis arrival time t0 + ζ is after its exiting time ti + τ i, in which case

the bank survives and its payoff (starting from ti) is given by the first term on the right-hand side

(RHS) of (9). For the second possibility t0 + ζ ∈ (ti, ti + τ i], the crisis arrival time t0 + ζ is before

its exiting time ti+τ i, in which case the bank fails at the crisis arrival time ti+x, where x ∈ (0, τ i].

For each x, we can find the probability density for t0 + ζ = ti + x and the corresponding expected

payoff, which gives the second term on the RHS of (9).

The first-order derivative with respect to τ i for (9), denoted by ẑ (τ i; ζ), is given by

ẑ (τ i; ζ) ≡ cH · Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])− (Σ−Π (`)) · f (t0 + ζ = ti + τ i) . (10)

Denote by τ∗i the optimum given by Program (9). The first-order condition ẑ (τ i = τ∗i , ζ) = 0

implies
f(t0+ζ=ti+τ

∗
i )

Pr(t0+ζ∈(ti+τ∗i ,ti+ζ])
= cH

Σ−Π(`) , that is,

λ

1− exp [−λ (ζ − τ∗i )]
=

cH

Σ−Π (`)
. (11)

The intuition behind (11) is clear. The term λ
1−exp[−λ(ζ−τ∗i )]

is the conditional density (hazard

rate) that the crisis will occur at time ti + τ∗i (by (8)), while Σ−Π (`) is the bank’s net loss in the

case that it is caught by the crisis. The term cH measures the net gain if the crisis does not occur

at time ti + τ∗i . Therefore, bank ti chooses the optimal waiting time τ
∗
i such that the expected cost

is equal to the expected benefit. We can see that the tradeoff is between flow payoff
(
cH − cL

)
· dt

(where cL → 0) and stock payoff Σ−Π (`).
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Solving the decentralized equilibrium. The decentralized equilibrium is a fixed-point

problem between τ∗ and ζ. Given τ∗, ζ is determined by (3). Given ζ, the optimal strategy τ∗i for

an individual bank ti is determined by (11). By symmetric equilibrium, we have

τ∗i = τ∗. (12)

Proposition 1 follows.

Proposition 1 The decentralized competitive equilibrium, characterized by the pair (τ∗, ζ), is given

by (3), (11) and (12). There exists a unique equilibrium. Moreover, if parameter ζ0 is close enough

to ζ , the unique equilibrium satisfies τ∗ > 0 (non-corner solution).

Proposition 1 shows banks’delay (i.e., τ∗ > 0) in response to information in an investment

game. The delay in response is due to asynchronous awareness which introduces an individual

bank’s uncertainty about when the crisis will come after its own awareness. As long as the cost in

the case of being caught by the crisis is not particularly high (i.e., the condition for the non-corner

solution), an individual bank has incentives to wait. We can immediately verify that τ∗ = 0 is not

an equilibrium when ζ0 → ζ.7 Intuitively, if other banks set τ∗ = 0, then the crisis will occur at

t = t0 + ζ (by Lemma 1). Recalling that the fire-sale price starts to fall only after t = t0 + ζ0, the

fire-sale loss at the crisis time (measured by Σ−Π (`)) will be small if ζ0 → ζ. This means that the

cost of waiting for a particular individual bank is small and thus it has an incentive to wait (i.e.,

τ∗i > 0). That is, τ∗ = 0 is not incentive-compatible for the decentralized competitive equilibrium.

2.2.2 The social planner’s second-best constrained problem

Suppose that the social planner cannot observe the shock time t0 either. But the social planner

chooses the same waiting length τ on behalf of all individual banks. Note that studying the social

planner’s choice is to have a benchmark, and we will study how to indirectly implement the social

planner’s τ in Section 5. Denote the arrival time of the crisis by t = t0 + ζ. The second-best

constrained problem for the social planner is given by

max
τ

Ψ (τ , ζ) ≡
∫ t0+ζ−τ

t0

[
(ti + τ − t0) cH + Σ

] 1

η
dti +

∫ t0+η

t0+ζ−τ

[
ζcH + Π (`)

] 1

η
dti +

(
G
(
ωC
)
− ωC`

)
s.t. ζ =

τ + η

1 + κ
βη

given by (3)

ωC ≡ ω (t = t0 + ζ) = 1− ζ − τ
η

` = ` (ζ) given by (5), and Π (`) = `Σ. (13)

7To guarantee the unique equilibrium to be a non-corner solution, the paper of Abreu and Brunnermeier (2002)
also implicitly assumes a parameter restriction (Proposition 1 in their paper), in a similar manner to ours.
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The social planner recognizes that τ endogenously impacts ζ, which is the first constraint. In the

objective function, we count the payoffs starting from t0 without loss of generality, as counting

from any other time point merely alters the objective function of (13) by adding a constant. Banks

fall into two categories: early banks receiving information at ti ∈ [t0, t0 + ζ − τ ] and late banks

receiving information at ti ∈ (t0 + ζ − τ , t0 + η]. Early banks exit before the crisis and survive,

while late banks are caught by the crisis and fail. The first term in the objective function is the

payoff for the survival banks. A typical survival bank ti gets the continuous payoff flow cH in the

period [t0, ti + τ ] for time length ti+τ − t0 until its exit time ti+τ , and gets the payoffΣ at its exit

time by reinvesting its full liquidation value L = 1. The second term in the objective function is the

payoff for the failed banks. A typical failed bank ti gets the continuous payoffflow cH in the period

[t0, t0 + ζ] for time length ζ until the crisis arrival time point t = t0 + ζ, and gets the expected

payoff Π (`) at the crisis arrival time by reinvesting its partial liquidation value L = ` = ` (ζ) < 1.

The third term is the payoff for the outside investor sector.

It is worth noting that because the social planner cannot observe t0 either, the maximization

problem can instead be written by adding the expectation operator over t0. However, as we can

see in the first line of (13) (define s = ti − t0 and replace ti by s in the integral part), t0 in the
objective function can actually be cancelled out. So the expectation over t0 is irrelevant.

The first-order condition of Program (13) implies z (τ) = 0, where

z (τ) ≡ dΨ (τ , ζ (τ))

dτ
=



(1− ω) cH︸ ︷︷ ︸
survival banks’payoff change (+)

+

(
cH +

dΠ (`)

d`

d`

dζ

)
dζ

dτ
ω︸ ︷︷ ︸

failed banks’payoff change (−)

+ (Π (`)− Σ)
dω

dτ︸ ︷︷ ︸
more banks caught (−)

+

(
− d`
dζ

)
dζ

dτ
ω︸ ︷︷ ︸

outside sector’s payoff change (+)


,

(14)

in which dζ
dτ = 1

1+κ
β
η ,

d`
dζ = −v, dΠ(`)

d` = Σ, and dω
dτ =

d
(

1− ζ−τ
η

)
dτ = − 1

η

(
dζ
dτ − 1

)
.

The first-order derivative (14) highlights the benefit-cost tradeoff for the social planner in choos-

ing the optimal waiting length τ . An increase in τ has four effects on the payoffs in the objective

function of (13). First, survival banks with 1 − ω mass obtain the interest flow cH for a longer

period because the crisis is delayed longer, so the total incremental payoffs are given by the first

term on the left-hand side (LHS) of (14). Second, failed banks with ω mass also obtain the interest

flow cH for a longer period; however, their expected reinvestment payoff Π (`) is decreased due to

a more delayed crisis. Third, a more delayed crisis results in some banks switching from survival

banks to failed banks and each of such banks loses Σ− Π (`), which is the third term. The fourth

term represents the change in payoff for the outside investor sector. Note that adding up the second

term and the fourth term in (14) (i.e., the change in payoff for failed banks and for outside investors
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as a whole) yields
(
cH + d(Π(`)−`)

d`
d`
dζ

)
dζ
dτ ω < 0 by Assumption 2.

Proposition 2 The social planner has a unique optimal τ , denoted by τSB, which lies in τSB ∈[
0, ζ̄
)
. Moreover, under the suffi cient condition that v(Σ−1)

cH
≥ β

κη + 2, it follows that τSB = 0.

The intuition for the suffi cient condition to ensure τSB = 0 in Proposition 2 is the following.

One dollar of cash has different social values in the hands of failed banks (sellers) and in the hands

of outside investors (buyers), because they have different marginal utilities/productivities, recalling

that failed banks have valuable new investment opportunities while outside investors do not. (This

is equivalent to buyers and sellers having different MRS, causing “distributive externality”, in

Dávila and Korinek (2018)). Hence, the wealth redistribution caused by the price change matters.

The value (PV) from reinvesting the fire-sale price ` for failed banks is Π (`) = `+ ` (Σ− 1), while

the value for outside investors is ` itself. Hence, a decrease in price ` causes wealth redistribution,

reducing the social surplus, and the effect can be captured by d(Π(`)−`)
d` = Σ − 1. A delayed crisis

decreases the fire-sale price ` and thus reduces the surplus, captured by d(Π(`)−`)
dζ = d`

dζ
d(Π(`)−`)

d` =

−v (Σ− 1), while the gain from a delayed crisis is captured by a function of cash flow cH . Therefore,

when v(Σ−1)
cH

is high enough, the social planner would choose no delay, that is, τSB = 0.

First best. Before closing this subsection, we discuss the first best, where the social planner

can perfectly observe the shock time t0 and coordinate all banks to choose the same waiting length

τ . In this case, there is no asynchronous awareness and banks are essentially homogeneous. The

crisis arrival time then is t = t0 + ζ with ζ = τ ; that is, all banks exit from the speculative sector

simultaneously at time t = t0 + ζ, in contrast with the second best case where (survival) banks exit

sequentially over [t0 + τ , t0 + ζ). Denote by τFB the social planner’s optimal τ in the first best,

and by ζFB and ζSB the equilibrium ζ in the first best and in the second best, respectively. It is

easy to show that if v is suffi ciently high, ceteris paribus, the first best is such that banks stay in

the speculative sector as long as possible and, at the same time, the liquidation price is ensured to

be ` = 1.8 This implies τFB = ζFB = ω0
β
κ < ζSB by noting ζ0 ≡ ω0

β
κ < ζ while ζSB ∈

[
ζ, ζ̄
]
.

2.2.3 Comparison of the second best and the competitive equilibrium

We have the following result.

Proposition 3 Under the suffi cient condition that v(Σ−1)
cH

is high enough, it follows that τSB ≤ τ∗

with strict inequality holding whenever τ∗ > 0 (non-corner solution). That is, the banks exit too

late compared with the second-best optimum.
8When the crisis has not yet struck, the assets can be sold in an orderly way to investors in a related sector with

the constant price 1. Once the crisis hits – banks assets stop generating positive cash flows – bank assets have to
be immediately under fire sales to outside investors in a less-related sector. As will be discussed later, as long as the
liquidation price of bank assets exhibits some degree of discontinuity at the crisis time, our model is robust.
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The key intuition behind the result of over-waiting is that individual banks do not internalize

the externality generated by their own waiting strategies. To provide clear economic insight, we

consider the limiting case of λ→ 0. Lemma 3 follows.

Lemma 3 (Decomposing the externality) Under the limiting case of λ → 0 (and r → 0), it

follows that ẑ (τ i = τ , ζ) = ∂Ψ(τ ,ζ)
∂τ . Thus, dΨ(τ ,ζ(τ))

dτ = ∂Ψ(τ ,ζ)
∂τ + dζ

dτ
∂Ψ(τ ,ζ)
∂ζ implies

z (τ)− ẑ (τ i = τ , ζ (τ)) =
dζ

dτ

∂Ψ (τ , ζ)

∂ζ︸ ︷︷ ︸
not internalized

(15)

at any pair (τ , ζ (τ)), where dζ
dτ = 1

1+κ
β
η and

∂Ψ (τ , ζ)

∂ζ
= (Σ−Π (`))

1

η︸ ︷︷ ︸
part 1 externality (+)

+ cHω︸︷︷︸
part 2 (+)

+ (Σ− 1)ω (−v)︸ ︷︷ ︸
part 3 (−)

. (16)

The magnitude of the part-1 externality, called “quantity effect”, is determined by the product

of two variables:

(Q1) The incremental value for a bank switching to survival from failure, Σ−Π (`),

(Q2) The sensitivity of the mass of survival banks to a change in the crisis time, ∂(1−ω)
∂ζ = 1

η ;

The magnitude of the part-3 externality, called “price effect”, is determined by the product of

three variables:

(P1) The difference in marginal utility/productivity between failed banks and outside investors,
d(Π(`)−`)

d` = Σ− 1,

(P2) The aggregate quantity of fire sales (the mass of failed banks), ω,

(P3) The sensitivity of the fire-sale price to a change in the crisis time, d`dζ = −v.

The expression (15) analytically characterizes the wedge between the two first-order conditions

and shows that the wedge maps one-to-one to the externality. Recall that Ψ (τ , ζ) is the social

planner’s objective function. From Lemma 3, we can see that while the social planner considers

both the direct and the indirect effects of increasing τ (i.e., z (τ) = dΨ(τ ,ζ(τ))
dτ ), individual banks

only consider the direct effect (i.e., ẑ (τ i = τ , ζ) = ∂Ψ(τ ,ζ)
∂τ ). The externality is fully captured by

the indirect effect, namely the term dζ
dτ

∂Ψ(τ ,ζ)
∂ζ .

Equation (16) further decomposes the externality into three parts. When individual banks

increase τ∗, the crisis is delayed longer (i.e., ζ is increased). An increase in ζ has three effects

(externality) on other banks which keep τ∗ and outside investors. First, a more delayed crisis

causes some of the other banks, which would otherwise fail, to be able to successfully escape from
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being caught by the crisis and each of such banks gains Σ − Π (`) (part 1), by noting ∂(1−ω)
∂ζ = 1

η

and 1− ω is the mass of survival banks. Second, a more delayed crisis also causes those eventually
failed banks among the other banks, with a total mass ω, to obtain the higher interest flow cH for

a longer period (part 2). Third, a more delayed crisis results in a lower liquidation price ` (ζ) for

those eventually failed banks and thereby a lower social surplus Π (`) − ` (part 3) for those failed
banks and outside investors as a whole, by noting d`

dζ
d(Π(`)−`)

d` = (−v) (Σ− 1). Under a suffi cient

condition that v(Σ−1)
cH

is high enough, the negative externality outweighs the positive externality

(so the net externality is negative), which is the root cause of the result τSB < τ∗.

It is worth noting that when some banks (say, group A) decide to increase their τ for some

reason, their action will make the other banks (group B) survive more likely, but the total number

of banks caught by the crisis in the system (including those within group B plus those within group

A) increases, decreasing the fire-sale price and hence forming a negative externality.

Our paper studies the timing dimension of externality, which is different from prior research.

Our decomposition of externality can be connected to the decomposition in Dávila and Korinek

(2018). The part 3 of externality in our model corresponds to “distributive externality” in their

paper (see also Caballero and Krishnamurthy, 2003; Lorenzoni, 2008; He and Kondor, 2016). The

three variables that determine the magnitude are also similar. The “collateral externality”in their

decomposition is the effect of the price-change triggered tightness of collateral constraints and

consequent asset reallocation between buyers and sellers with different valuations/productivities

on assets. The part 1 of externality in our model resembles the “collateral externality” in their

paper. But the tightness of the constraint in our model is not triggered by the change of the asset

price. More importantly, the sign of “collateral externality”is often negative, i.e., individual agents

engage in overborrowing and overinvestment. In our model, the sign of the part 1 of externality

is positive, i.e., some individual banks’longer delay benefits other banks by making other banks

survive more likely.

Two remarks regarding the externality in our model are in order. First, our paper emphasizes

the possibility of the outcome of negative net externality in the timing strategy, not the necessity.

Indeed, our model shows that there exist both positive and negative forces of externality in the

timing strategy, and the net effect can be either positive or negative. However, received wisdom and

direct intuition would suggest that the externality should only be positive as implied by the classic

static coordination games such as Morris and Shin (2004), Cooper and John (1988), and Angeletos

and Pavan (2007), where banks benefit each other by extending credit. Our paper identifies a new

source of externality in the timing strategy that is negative and shows that the net externality in

the timing strategy can be negative. Second, the externality we identify in the dynamic context

depends on the interaction of two ingredients of the model characterized by two parameters β > 0

and γ > 0. In fact, based on Lemma 3, the negative externality in the timing strategy is due to
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d`
dζ = −v where v ≡ γ κβ , and we can decompose

d`
dζ = dωC

dζ
d`
dωC

(recalling that ωC denotes the mass

of banks caught by the crisis) with dωC

dζ = κ
β and

d`
dωC

= −γ. The production complementarity
parameter β > 0 guarantees that, after the fundamental deterioration starts, a more delayed crisis

leads to more banks being caught by the crisis (i.e., dω
C

dζ > 0), while the downward-slope parameter

γ > 0, which is emphasized by the existing literature, guarantees that more banks being caught

leads to a lower fire-sale price for every caught bank (i.e., d`
dωC

< 0).

Corollary 1 follows directly from Proposition 3.

Corollary 1 The measure of banks that reallocate resources to invest in the traditional business

sector is given by ζ−τ
η +

(
1− ζ−τ

η

)
p (`), which is lower in the decentralized competitive equilibrium

than in the second-best optimum.

In fact, a more delayed crisis results in fewer survival banks and a lower liquidation value for

every failed bank, and both forces contribute to the decrease in the number of banks ultimately

investing in the traditional business sector.

Discussions of the assumptions. 1) We assume that a bank cannot observe other banks’exit

or entry decisions, so the information regarding t0 is not revealed. Empirically, banks can exit by

shorting or holding derivatives, which may be secretive and hard to observe. Sequential awareness

can also be interpreted as a dispersion of beliefs or opinions as in Abreu and Brunnermeier (2002,

2003); in this case, individual banks may not respond much even after observing other banks’exit

or entry actions. Theoretically, some earlier works in the literature address the issue of why the

information regarding t0 in the model framework of Abreu and Brunnermeier (2003) is not revealed

through some devices. For example, by introducing multidimensional uncertainty into the model

of Abreu and Brunnermeier (2003), Doblas-Madrid (2012) shows that the economy can have a

suffi cient amount of noise which makes it diffi cult for agents to infer information from endogenous

asset prices. Along this line, a more complicated model could explicitly formalize that banks’exit

or entry decisions involve many different motives, so agents face multidimensional uncertainty and

it is diffi cult for them to infer the information regarding t0 through banks’exit or entry actions.

2) As long as under some assumption the fire-sale price at the crisis time exhibits a discontinuity

(i.e., ` < 1 so there exists a gap between Σ and Π (`)), together with the assumption of cash flow

relationship cH > cL, a tradeoff exists regarding timing of exit for individual banks. Also, it is

assumed that fire sales must occur when the crisis strikes. In fact, fire sales and bankruptcy, despite

possible ex post ineffi ciency incurred, work as an institution in market economy, so assets, even

possessed by more productive but defaulted debtors, have to be subject to immediate liquidation

without waiting (e.g., Kiyotaki and Moore, 1997). 3) Under the assumption of β > 0 coupled with

γ > 0, the timing dimension of externality arises, as discussed earlier.
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A numerical exercise. We provide a simple numerical exercise to compare the second best

and the decentralized equilibrium. The numerical exercise is based on the baseline model under the

general Assumption 1, rather than under Assumption 1’(see the details in Appendix A). Whenever

possible, we choose parameter values according to the standard literature on quantitative research.

As it is hard to find the standard literature to refer to for some of the other parameters, we will

try to provide reasonable values for them. Table 1 summarizes the parameter values.

Given these parameter values, for the second-best equilibrium, the social planner chooses τSB =

0, under which ζ = 1.36 and the equilibrium fire-sale price is ` = 0.99. For the decentralized

equilibrium, individual banks choose τ∗ = 0.23 (namely, delaying for 0.23 years), under which

ζ = 1.47 the equilibrium fire-sale price is ` = 0.88. The social welfare function Ψ (τ , ζ (τ)) evaluated

at τSB = 0 is Ψ (τ , ζ (τ))|τ=0 = 3.83, while the social welfare function evaluated at τ∗ = 0.23 is

Ψ (τ , ζ (τ))|τ=0.23 = 3.73. That is, the welfare loses by 2.61% for the decentralized equilibrium

relative to the second best effi ciency. In the literature quantifying the effect of financial frictions,

the welfare cost due to the externalities (for the decentralized equilibrium allocation relative to the

constrained effi cient allocation) ranges from 0.05% to 0.135% in Bianchi and Mendoza (2010) and

Bianchi (2011) and is 0.15% in Boissay, Collard, and Smets (2016).

Parameter Description Value

r Risk-free interest rate 0.02

cL Cash flow of the traditional sector 0.07

cH Cash flow of the speculative sector 0.4

α The economic fundamentals prior to the negative shock 2

β The parameter of (production) complementarity among banks 1

κ The decline rate of economic fundamentals after the negative shock 0.4

λ The parameter of the prior distribution of t0 0.01

η Banks’sequential awareness window [t0, t0 + η] 3

γ The downward slope of the fire-sale price function 2.5

ω0 The intercept of the fire-sale price function 0.54

ζ0 ≡ ω0
β
κ In equilibrium no fire sale discount if the crisis occurs before t0 + ζ0 1.35

v ≡ γ κβ The decline rate of the equilibrium fire-sale price over time after t0 + ζ 1

Table 1: List of parameter values for the numerical exercise

Furthermore, Figure 3 plots the equilibrium waiting time τ as a function of parameters v, cL

and cH for the two equilibria, while keeping other parameters same as in Table 1. As we can see,

when v or cL is big enough or when cH is small enough, individual banks’equilibrium waiting time

τ is higher than the social planner’s. This result verifies Proposition 10 (a generalized version of

Proposition 3 under the general Assumption 1), which states that, when
v(cL/r−1)

cH
is high enough,

the negative externality dominates and individual banks will choose to wait longer than the planner.
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Figure 3: Comparative statics of the numerical exercise

Note: Figure 3 plots the equilibrium waiting time τ as a function of parameters v, cL and cH for the two

equilibria. When v, cL or cH changes, other parameters are kept the same as in Table 1.

3 The full model with both entry and exit decisions

In this section, we extend the baseline model by allowing banks to enter the speculative business

sector from the traditional business sector. The purpose of studying the entry decisions is to shed

light on the build-up of credit booms.

3.1 Setting

We add some minimum elements to the baseline model. There is a continuum of banks with unit

mass. These banks are currently investing in the traditional business sector. But all banks know

that there is an alternative investment opportunity in the speculative business sector and that the

fundamentals of the alternative investment opportunity follow the process:

θ (t) =

{
α for t ∈ [ts, t0 ≡ ts +m]

α− κ (t− t0) for t > t0
, (17)

that is, the alternative investment opportunity starts to have good fundamentals, α, from t = ts,

and maintains the good fundamentals for time length m > 0, and then declines after t = t0 as

in the baseline model. Banks know the evolution of the process, but do not know when it starts.

More specifically, the arrival of ts is not observable by banks, and follows a prior exponential

distribution with pdf φ(ts) = λe−λts in the support ts ∈ [0,+∞). (This implies that t0 has pdf
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φ(t0) = λe−λ(t0−m) in the support t0 ∈ [m,+∞), in line with the baseline model.) After ts, banks

sequentially become informed of the arrival of ts, and the information spreads among banks over

[ts, ts + η], following a uniform distribution. We assume that η < m. Figure 4 gives an illustration.

Figure 4: The setup of the full model

Note: The speculative sector starts to have good fundamentals, α, from t = ts, and maintains the good

fundamentals for a duration of m > 0, and then declines. Banks sequentially become informed of the arrival

of ts over [ts, ts + η]. Each bank sets the strategy of staying in the sector for a duration of m+ τ .

As in the baseline model, a bank’s payoff at time t by investing in the speculative sector is

still given by (1) while the return on the investment in the traditional business sector is cL; payoff

parameters now satisfy the general Assumption 1 instead of Assumption 1’. The fire-sale price

function is still g (ω) =

{
1

1− γ · (ω − ω0)

when ω ≤ ω0

when ω > ω0

, where γ > 0 and parameter ω0 is a

small positive number. Other setups are the same as those in the baseline model.

3.2 Equilibrium

Banks make the entry and exit decisions, that is, they decide when to enter the speculative sector

and when to exit. We focus on the equilibrium in which banks immediately enter the speculative

sector upon receiving their private information. Given the entry strategy, we find the exit strategy

of banks. Specifically, a bank sets the strategy of staying in the speculative sector for a duration of

m+ τ after its entry at t = ti. Here m represents the known duration of good fundamentals within

the speculative sector, while τ is the to-be-solved strategy, so the presentation of the equilibrium

is symmetric to that of the baseline model.

As in the baseline model, we study the decentralized competitive equilibrium and the social

planner’s second-best constrained problem. To save space, the details are relegated to the appendix.

Proposition 4 summarizes the results.

Proposition 4 1) Under certain conditions (given in the proof), banks immediately enter the

speculative sector upon receiving their private information about the arrival of ts; 2) There exists a
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unique τ∗ for individual banks in the decentralized competitive equilibrium; 3)There exists a unique

optimum τSB for the social planner; 4) Under the suffi cient condition that v
(
cL

r − 1
)
/cH is high

enough, where v ≡ γ κβ , it follows that τ
SB < τ∗. That is, individual banks stay in the speculative

sector too long in the decentralized equilibrium in comparison with the second-best optimum.

The full model is highly similar to the baseline model mathematically, but the full model gives

the process of the rise and fall of the speculative sector. Banks gradually enter the speculative

sector, forming the rise. Individual banks stay in the speculative sector until they expect that the

speculative sector will collapse shortly. Individual banks gradually exit the speculative sector until

the bust with a crash at the crisis time. Some banks are caught by the crisis. The boom period

before the crash lasts longer and the crisis comes later for the decentralized equilibrium than for

the second best, and the magnitude of the crash is also larger (see also Figure 5 later).

4 The macroeconomic model

We now consider a standard macroeconomic growth model with both entry and exit. This model

explicitly shows the capital accumulation and consumption process and thus demonstrates the

business cycle dynamics under the microeconomic friction à la Abreu and Brunnermeier (2002,

2003).

We use a simple textbook macroeconomic growth setting, by embedding two modified elements

of the baseline model. First, the production that generates a constant dividend process (cH or cL)

in the baseline model is modified as an A-K technology. Second, when a bank is caught by a crisis,

it loses a proportion of its capital in fire sales (which can be interpreted as capital depreciation

or capital adjustment costs). Technically, we transfer a linear model (the baseline model) to a

log-linear model (the macroeconomic model). The tradeoff in the baseline model – a higher cash

flow vs. losing capital – becomes a higher growth rate vs. losing capital in the macro model.

4.1 Setting

Preference and technology. One investor is matched with one bank, and one bank is matched

with one firm (so we simply call a team a bank). This simplified setup is to capture the following

realism: if investors withdraw funding from banks, banks suffer a creditor run and must liquidate

their loan portfolios, which would in turn affect or interrupt the business operation of firms on the

real side of the economy. Each bank j has the following utility function∫ ∞
0

e−ρt logCjt dt. (18)
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The production takes the form of an A-K technology. If bank j operates in the traditional business

sector, its production technology (production function) is

yjt = ZKj
t , (19)

where Z represents productivity. If it operates in the speculative business sector, its production

technology is

yjt =

{
AKj

t

0 ·Kj
t

if θ (t) + β · ω (t) ≥ α (no crisis)
otherwise

, (20)

where A > Z, and ω (t) is the total measure of active banks at time t in the speculative business

sector. The setup (20) is a modified version of Eq. (1) in the baseline model. The fundamentals of

the speculative business sector, θ (t), follow the process given in (17). The setup of the information

structure is the same as in the model in Section 3.

Budget and capital evolution. A bank faces the budget constraint

Cjt + Ijt = ZKj
t

if it operates in the traditional business sector and

Cjt + Ijt = AKj
t

if it operates in the speculative business sector, where Ijt is the investment (saving). Crucially, if a

bank is caught by the crisis, its capital is under fire sales, in which case a proportion of its capital

is lost (due to capital depreciation or capital adjustment costs); that is,{
Kt → Kt · 1
Kt → Kt · ` ≤ Kt

if not caught by crisis

if caught
, (21)

where ` is the recovery rate in fire sales. Formally, if a bank is not caught by the crisis, its capital

evolves according to

dKj
t = −δKj

t dt+ Ijt dt,

where δ is the depreciation rate; if a bank is caught by the crisis at time t, its capital evolves

according to

dKj
t = −δKj

t dt+ Ijt dt− (1− `)Kj
t .

Compared with a standard growth model, (20) and (21) are two new elements, which are adopted

from the baseline model.

Fire-sale price. By changing the “simple discount”in the baseline model to the “compound
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discount”, we redefine the downward-sloping fire-sale price function:

` = g̃ (ω) =

{
1

exp [−γ · (ω − ω0)]

when ω ≤ ω0

when ω > ω0

, (22)

where ω is the measure of banks under fire sales. The fire-sale price function (22) can be equivalently

written as

` = g̃ (q; t) =

{
1

exp
[
−γ ·

(
q

K̄(t)
− ω0

)] when q
K̄(t)
≤ ω0

when q
K̄(t)

> ω0

,

where q = ωK̄ (t) is the aggregate quantity of capital under fire sales and K̄ (t) is the average

quantity of capital per bank under fire sales.

Outside investors. The outside investors also have utility function (18) and production func-

tion (19). The capital conversion technology of the outside investors is the following. When the

outside investors buy q units of capital from the banking sector, the outside investors can convert

them to G (q) units of new capital, where ` = G
′
(q) > 0 and G

′′
(q) < 0. The outside investors pay

the banking sector q` and retain G (q)− q` as profit. We assume that the outside investors are less
effi cient in using capital in the spirit of Kiyotaki and Moore (1997), and only µ (G (q)− q`) units of
capital are finally put into production, where µ < 1. In addition, we assume the outside investors

have initial endowment W0 > 0 in terms of capital at t = 0.

4.2 Equilibrium

As in the model in Section 3, banks make the entry and exit decisions. Again, we focus on the

equilibrium in which banks immediately enter the speculative sector upon receiving their private

information. Given the entry strategy, we find the exit strategy of banks. Specifically, a bank sets

the strategy of staying in the speculative sector for time length m + τ after its entry at t = ti,

where τ is to be solved. Denote the arrival time of the crisis by t = t0 + ζ. Similar to the baseline

model, before solving the equilibrium, we first characterize some properties.

Liquidation value ` as a function of crisis time ζ. Based on the modified fire-sale price

function (22), we have Lemma 4.

Lemma 4 The liquidation value or the loan recovery value for a bank caught by the crisis in the

macroeconomic model is given by

` ≡ ` (ζ) =

{
1

exp [−v (ζ − ζ0)]

when ζ ≤ ζ0

when ζ > ζ0

, (23)

where v ≡ γ κβ and ζ0 ≡ ω0
β
κ , which has the property that

d`
dζ = −`v < 0 for ζ > ζ0.
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Optimal consumption and capital evolution. The utility maximization of (18) subject to

the budget constraint gives the decision rule

Cjt = ρKj
t . (24)

Hence, if a bank were able to operate in the speculative business sector forever, its capital would

evolve according to

dKj
t = −δKj

t dt+ (A− ρ)Kj
t dt,

which implies

kt+x = kt + (A− ρ− δ)x for any x > 0, (25)

where we define kt ≡ logKt. Based on the consumption rule (24) and the capital evolving rule

(25), the value function for such a bank would then be given by∫ ∞
0

e−ρx (logCt+x) dx =

∫ ∞
0

e−ρx (log ρ+ kt+x) dx =
log ρ+ kt

ρ
+
A− ρ− δ

ρ2
. (26)

Value function. A bank, however, either i) safely moves to the traditional sector or ii) is

caught by the crisis and then moves to the traditional business sector. We find the general value

function formula for a bank in these two cases. Denote by kt the log value of capital stock of a bank

at time t. Suppose this bank stays in the speculative sector in the period [t, t+ x] and is caught

by the crisis at time t+ x and then moves to the traditional sector by using its liquidation value `

(i.e., its recovery capital from fire sales at the crisis). The value function of the bank at time t is

then given by

U(kt, x, `) ≡
∫ ∞

0
e−ρx (logCt+x) dx =

log ρ+ kt
ρ

+
A− ρ− δ

ρ2
− e−ρxA− Z

ρ2
+ e−ρx

log `

ρ
. (27)

The result in (27) is intuitive. Compared with (26), there are two additional terms in (27): the third

term reflects the permanent capital growth loss with magnitude A − Z in the period [t+ x,+∞)

and the fourth term reflects the log-capital loss log ` at time t+ x. Note that for a bank in case i),

we can simply set ` = 1.

4.2.1 The decentralized competitive equilibrium

Conditional on entry, the decentralized equilibrium is characterized by the pair (τ∗, ζ). Given ζ, find

the optimal strategy τ∗i for an individual bank ti. The individual bank ti’s optimization problem
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in choosing its length of stay, m+ τ i, is given by

τ∗i = arg max
τ i


Pr (t0 + ζ ∈ (ti +m+ τ i, ti +m+ ζ])︸ ︷︷ ︸

probability of survival

U(k (ti) ,m+ τ i, 1)︸ ︷︷ ︸
value in the case of survival

+
∫ x=τ i
x=0 f (t0 + ζ = ti +m+ x)︸ ︷︷ ︸

density of failure

U(k (ti) ,m+ x, `)︸ ︷︷ ︸
value in the case of failure

dx

 , (28)

where U(k (ti) ,m+ τ i, 1) and U(k (ti) ,m+ x, `) are given based on the formula U(kt, x, `) in (27),

with ` = ` (ζ) given in (23) and an individual bank taking ` as given.

Individual banks’optimization problem (28) is almost the same as that in (9) in the baseline

model. The only difference is that the cash value in the baseline model becomes the utility value in

the macro model. If bank ti exits before the crisis, its value function is given by U(k (ti) ,m+τ i, 1);

if it is caught by the crisis at time ti+m+x, its value function is U(k (ti) ,m+x, `). The first-order

condition of the optimization problem (28) implies

λ

1− exp [−λ (ζ − τ∗i )]
=
A− Z
− log `

. (29)

The result of (29) is important. It cleanly and intuitively shows the key tradeoff in our macroeco-

nomic model. A bank faces the following tradeoff in choosing its optimal τ i. On the one hand,

an increase in τ i, meaning that the bank stays in the speculative sector longer, makes its capital

grow at a higher rate (i.e., from Z to A). In other words, if the bank experiences such an in-

crease in capital growth rate over the period [t, t+ dt], the gain is (A− Z) dt in terms of log-capital

(i.e., kt+dt = kt + (A− Z) dt by recalling (25)). On the other hand, an increase in τ i raises the

chance of being caught by the crisis; if that happens, the loss is log ` in terms of log-capital (i.e.,

kt+dt = kt + log `). In terms of the impact on the cumulative discounted log-utility given by the

value function, the tradeoff is then between the effect (A−Z)dt
ρ and the effect − log `

ρ . This exactly

maps onto the tradeoff in Eq. (11) for the baseline model: flow payoff
(
cH − cL

)
dt versus stock

payoff (1− `) Σ.

Proposition 5 The decentralized competitive equilibrium of the macroeconomic model, character-

ized by the pair (τ∗, ζ), is given by (3), (29) and (12), and satisfies two entry conditions (given in

the proof).

1) When λ is small enough and m is high enough, banks immediately enter the speculative sector

upon receiving their private information about the arrival of ts.

2) There exists a unique equilibrium.

When choosing its optimal waiting time τ i, an individual bank faces a tradeoff in the macro

model similar to that in the baseline model, as shown by the first-order condition (29).

26



4.2.2 The social planner’s second-best constrained problem

Suppose the social planner can coordinate all banks to choose the same length of stay, m + τ , in

the speculative sector conditional on banks’entry. Given the exit strategy, banks are individually

rational in the entry decision ex ante.

We first find the sum of discounted utility of each bank in the social planner’s objective function.

Without loss of generality, all the utility terms are discounted back to time ts. On top of the growth

rate Z in the traditional sector, banks obtain the additional growth rate A− Z if they operate in

the speculative sector. A typical early (survival) bank receiving information at ti ∈ [ts, ts + ζ − τ ]

operates in the speculative sector during the period [ti, ti +m+ τ ] for time length m+ τ . Similar

to (27), the sum of discounted utility for such a bank is hence given by

V (k (ts) , ti) =
log ρ+ k (ts)

ρ
+
Z − ρ− δ

ρ2
+ e−ρ(ti−ts)A− Z

ρ2

(
1− e−ρ(m+τ)

)
, (30)

where k (ts) is the bank’s log capital stock at time ts. A typical late (failed) bank receiving informa-

tion at ti ∈ (ts + ζ − τ , ts + η] operates in the speculative sector during the period [ti, t0 + ζ = ts +m+ ζ]

for time length (m+ ζ)− (ti − ts); in particular, it is caught by the crisis at time t = ts + m + ζ.

The sum of discounted utility for such a bank is hence given by

V̂ (k (ts) , ti, `) =
log ρ+ k (ts)

ρ
+
Z − ρ− δ

ρ2
+e−ρ(ti−ts)A− Z

ρ2

(
1− e−ρ[(m+ζ)−(ti−ts)]

)
+e−ρ(m+ζ) log `

ρ
.

(31)

Conditional on entry, the social planner chooses the optimum τSB as follows:

τSB = arg max
τ



∫ ts+ζ−τ
ts

V (k (ts) , ti)︸ ︷︷ ︸
utility of early bank ti

1
ηdti +

∫ ts+η
ts+ζ−τ V̂ (k (ts) , ti, `)︸ ︷︷ ︸

utility of late bank ti

1
ηdti

+

 log ρ+ (logW0 + tsz)

ρ
+ z

1

ρ2
+ e−ρ(m+ζ)

log
[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ


︸ ︷︷ ︸

utility of outside investors


s.t. ζ =

τ + η

1 + κ
βη

given by (3)

ωC ≡ ω (t = t0 + ζ) = 1− ζ − τ
η

and q = ωCK̄ (t)

` = ` (ζ) given by (23). (32)

Similar to the social planner’s objective function of (13) in the baseline model, the objective function

of (32) contains three parts. The first part contains the utility of early (survival) banks which receive

information at ti ∈ [ts, ts + ζ − τ ]. The second part contains the utility of late (failed) banks which

receive information at ti ∈ (ts + ζ − τ , ts + η]. The third part contains the utility of the outside
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investor sector. For the outside investors, they have saved exp [logW0 + (t0 + ζ) z] units of capital

at t = t0 + ζ, so the profit gained from banks’fire sales increases the capital by a proportion of
µ(G(q)−q`)

exp[logW0+(t0+ζ)z] , where a ≡ A− ρ− δ and z ≡ Z − ρ− δ.

Proposition 6 The second-best equilibrium of the macroeconomic model, characterized by the pair(
τSB, ζ

)
, is given by (3) and (32) and satisfies two entry conditions (given in the proof).

1) When λ is small enough and m is high enough, banks immediately enter the speculative sector

upon receiving their private information about the arrival of ts.

2) Suppose A − Z < v. Under the suffi cient condition that ρ is small enough and µ is small

enough, the social planner has a unique optimum τSB in choosing stay length m+ τ .

The social planner also faces a trade-off between a higher growth rate and loss of capital, while

recognizing that τ endogenously impacts ζ as in the baseline model. Proposition 7 compares the

second best equilibrium and the competitive equilibrium.

Proposition 7 Under the suffi cient condition that ρ is small enough, µ is small enough, and v

is high enough, ceteris paribus, it follows that τSB < τ∗. That is, individual banks stay in the

speculative sector too long in the decentralized equilibrium compared to the second-best optimum.

The reason behind individual banks’over-waiting is still externality. Similar to the baseline

model, when the fire-sale parameter v is high enough, a delayed financial crisis will result in a big

capital loss in society (with taking into account the position of outside investors). The planner

internalizes this and would “coordinate”individual banks to stay shorter in the speculative sector.

4.3 Aggregate output

In this subsection, we work out the aggregate output. For simplicity, we assume that m − η is
suffi ciently high such that ts +m+ τ > ts + η is true, which means that only after all banks have

already entered the speculative sector do they start to gradually exit the speculative sector. Denote

by K0 ≡ exp k0 the capital each bank possesses at time t = 0 and by Y (t) the aggregate output of

the two sectors together at time t.

We divide time into five stages: t ∈ [0, ts), [ts, ts + η), [ts + η, ts +m+ τ = t0 + τ), [t0 + τ , t0 + ζ),

and [t0 + ζ,+∞). The expression of the aggregate Y (t) in the five stages is provided in the appen-

dix. We also calculate the aggregate output of the speculative sector only, denoted by Ys (t), the

expression of which is provided in the appendix.
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Figure 5: Aggregate output

Note: Figure 5 depicts the process of the aggregate output. Y (t) represents the total aggregate output of

the speculative sector and the traditional sector at time t, whereas Ys(t) represents the aggregate output of

the speculative sector at time t. For the planner’s second-best equilibrium (the decentralized equilibrium),

the time at which banks start to exit the speculative sector is t0 + τSB (t0 + τ∗), and the time of the crisis

is t0 + ζSB (t0 + ζ∗).

Figure 5 depicts the process of the aggregate output of Y (t) and Ys (t) under the second-

best equilibrium and the decentralized equilibrium. Note that the second-best equilibrium and the

decentralized equilibrium have the same entry decision (i.e., banks immediately enter the speculative

sector upon receiving their private information) and the two equilibria differ only in the exit decision

(i.e., length of stay, m + τ). Hence, the aggregate output, Y (t) or Ys (t), coincides for the first

three stages but diverges for the fourth and fifth stages under the two different equilibria. Figure

5 depicts only the process for the last three stages.9

From Figure 5, we can see that under the decentralized equilibrium (relative to the second

best) the more delayed crisis causes a bigger drop in the aggregate capital and a bigger crash of

9We assume that no precise and timely information, signal or index about the aggregate output is available, so the
shock time ts is not revealed. This is similar to Abreu and Brunnermeier (2002, 2003) where the asset price cannot
reveal the information of the shock time.
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the aggregate output Y (t) when the crisis hits at t = t0 + ζ. As a result, it takes longer for the

aggregate output Y (t) to recover to the pre-crisis level. In short, the decentralized equilibrium

features a more delayed crisis and a slower recovery.

The aggregate output Ys (t) of the speculative sector exhibits a “∩”shape over the fourth stage
before the crash. At the beginning of the fourth stage, because only a few banks have started to exit

the speculative sector and thus the growth in capital of staying banks in that sector can suffi ciently

offset the loss of capital from exiting banks, the aggregate output Ys (t) continues to increase for a

while before declining.10 In other words, in the fourth stage, Ys (t) continues the boom of the third

stage but with a slowdown in the growth rate before experiencing a decline, and finally collapses.

Cogley and Nason (1995) raise a well-known criticism regarding the inability of the standard

real business cycle (RBC) model to explain the positive autocorrelation of output growth. Chari,

Kehoe and McGrattan (2000) impose a similar critique for models with price stickiness in generating

persistent movements in output. Kocherlakota (2000) further shows that, with careful calibration,

even the theoretically promising and long-awaited internal propagation in the Kiyotaki—Moore

type of credit-constraint models is weak. To overcome the criticism, the later DSGE literature has

introduced many real rigidities to generate some inertia in output’s response to macroeconomic

shocks. However, these real rigidities are regarded by many as ad hoc and inconsistent with micro-

economic evidence.11 It comes as no surprise that these assumed real rigidities have also received

harsh criticism in recent years (e.g., Stiglitz, 2018; Korinek, 2018). That asynchronous awareness

alone in our paper can turn a one-time shock into a rich output growth cycle is hence interesting.

4.4 A simple calibration

In this part, we conduct a simple calibration. We choose parameter values in a way such that our

numerical result can match the annual GDP percent change in the U.S. around the Great Recession.

The parameter values are summarized in Table 2. In the numerical exercise, we choose µ = 0 for

simplicity. The specification µ = 0 implies that outside investors just serve to pin down the fire-

sale price. Choosing µ > 0 would greatly complicate our experiment yet provides no additional

insight, because we need to calibrate the size of outside investors in a reasonable way. Moreover,

the calibration result will not change much even if we choose µ > 0.

10For the fourth stage, if the capital of staying banks does not grow fast enough to offset the loss of capital caused
by some banks that exit, the aggregate output will start to decline from the very beginning.
11For instance, in order to explain the hump-shaped response of consumption, the DSGE models often assume habit

formation preference. As argued by Angeletos and Huo (2021), the degree of habit in DSGE models is far larger than
that supported by micro-economic evidence estimated by Havranek, Rusnak, and Sokolova (2017). In order to explain
the hump-shaped response of investment, the DSGE model often assumes some kind of investment adjustment costs.
As argued by Wang and Wen (2012), this assumption is not consistent with the micro-level investment which is often
lumpy and has almost zero autocorrelation.
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Parameter Description Value

A Productivity of the speculative sector 0.165

Z Productivity of the traditional sector 0.15

ρ Time discount factor 0.01

δ Depreciation rate 0.1

α The economic fundamentals prior to the negative shock 7

β The parameter of (production) complementarity among banks 6

κ The decline rate of economic fundamentals after the negative shock 1

λ The parameter of the prior distribution of t0 0.01

η Banks’sequential awareness window [ts, ts + η] 2.5

m Speculative sector’s good fundamentals last in window [ts, ts +m] 4

γ The downward slope of the fire-sale price function 0.72

ω0 The intercept of the fire-sale price function 1/3

ζ0 ≡ ω0
β
κ In equilibrium no fire sale discount if the crisis occurs before t0 + ζ0 2

v ≡ γ κβ The decline rate of the equilibrium fire-sale price over time after t0 + ζ0 0.12

µ The outside investors’effi ciency in utilizing capital 0

Table 2: List of parameter values for the calibration

Figure 6 displays the aggregate output Y (t) for the decentralized equilibrium and for the second

best. We set ts = 2003 and t0 ≡ ts + m = 2007. The social planner chooses τSB = 0.33, under

which ζSB = 2 and ` = 1. For the decentralized equilibrium, individual banks choose τ∗ = 0.61

(namely, over-delaying about 3 months), under which ζ∗ = 2.2 and ` = 0.98. The capital stock

after the crisis t0 + ζ∗ in the decentralized equilibrium is about 0.48% lower than the level in the

second best. The calculation of capital stock K (t0 + ζ) is given in the appendix.

Figure 6: Simple calibration – aggregate output Y (t)

Note: Figure 6 displays the aggregate output Y (t) for the decentralized equilibrium and for the second best.
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We set ts = 2003 and t0 ≡ ts +m = 2007 (that is, m = 4 years). The social planner chooses τSB = 0.33

(years), under which ζSB = 2 (years). For the decentralized equilibrium, individual banks choose τ∗ = 0.61

(years), under which ζ∗ = 2.2 (years).

We compute the annual GDP percent change based on the flow Y (t) obtained above. The

annual GDP in year x is calculated as Y annual (x) =
∫ x+1
x Y (t) dt. Figure 7 plots the annual GDP

percent change according to the model, in comparison with the U.S. data. The numerical result

generated by our macroeconomic model with the friction of asynchronous awareness appears to be

consistent with the boom-bust cycle observed in the U.S. data.

Figure 7: Simple calibration – annual GDP percent change

Note: Figure 7 plots the annual GDP percent change according to the model, in comparison with the U.S.

data. The annual GDP in year x is calculated as Y annual (x) =
∫ x+1
x Y (t) dt, where the aggregate output

Y (t) for the decentralized equilibrium and for the second best has been calculated in Figure 6. The data of

the U.S. annual GDP percent change is from the Federal Reserve Bank of St. Louis.

5 Policy implications

In this section, we discuss policy measures that can potentially mitigate or eliminate the ineffi ciency

of the decentralized equilibrium relative to the second best, that is, we find policies that might

implement the second-best effi ciency. To illustrate the idea, we use our baseline model to study

policy implications.12 We analyze two policy measures: tax policy (by levying capital tax on failed

banks) and credit policy (by increasing refinancing cost for failed banks).

Tax policy Recall that in the baseline model, a failed bank’s payoff is Π (`) = `+` (Σ− 1) = Σ·`
12The macroeconomic model involves the concave utility function (i.e., the log utility), which complicates the

analysis of the policy implementing the second best in terms of utility. However, if we focus on implementing the
second best in terms of aggregate output, our analysis in this section based on the baseline model setting applies to
the macroeconomic model setting.
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while a survival bank’s payoff is Σ ·1. Hence, we can alternatively interpret the setup of the baseline
model in the way that the investment project in the traditional sector is scalable when banks re-

invest their asset liquidation value from the speculative sector. This alternative interpretation is

also in line with the setup of our macroeconomic growth model.

We consider the following policy: the government imposes capital tax on failed banks while

distributing the tax revenue among all banks as a lump-sum subsidy. Specifically, the government

sets the tax rate χ on the asset liquidation value of failed banks, that is, a failed bank retains

(1− χ) ` amount of capital and the government collects χ` as tax. The total tax revenue for the

government thus is χ`ω, where ω is the proportion of failed banks in the system. The government

then distributes the tax revenue at time t = t0 + ζ such that all banks receive a lump-sum capital

subsidy, Λ. The tax policy is characterized by {χ,Λ}, where Λ is a function of χ determined by

the break-even condition of the government, that is, Λ = χ`ω. Under this policy, the decentralized

equilibrium condition (11) is replaced by

λ

1− exp [−λ (ζ − τ∗)] =
cH

[Σ (1 + Λ)]− [Σ [(1− χ) `+ Λ]]
(33)

or λ
1−exp[−λ(ζ−τ∗)] = cH

Σ−Σ`(1−χ) , where Σ [(1− χ) `+ Λ] is the payoff in the case of failure and

Σ (1 + Λ) is the payoff in the case of survival, and an individual bank understands that there is a

tax penalty in the case of failure and takes subsidy Λ as a given constant. Then, we can find a

unique χ such that τ∗ given by (33) together with (3) satisfies τ∗ = τSB.

Moreover, under the policy, the second-best effi ciency (i.e., the value of the objective function

of (13) evaluated at τ = τSB) is implemented as long as τSB is implemented. Intuitively, as failed

banks and survival banks have the same productivity in using capital, the capital transfer from the

failed banks to the survival banks at t = t0 + ζ under the tax policy will not affect the aggregate

output. Corollary 2 follows.

Corollary 2 There exists a unique tax rate χ that can implement the second best in the baseline

model.

The intuition behind the tax policy is easy to understand. Since failed banks must pay a tax

(which essentially is a penalty) on their fire-sale value, then the cost of being caught by the crisis

becomes higher under the tax policy. Consequently, individual banks will optimally choose to lower

the chance of being caught by choosing to exit the speculative sector sooner, which implements the

second best optimum.

Credit policy In our baseline model, we assume that a failed bank which is short of capital

for financing the investment cost 1 can refinance the deficit part through borrowing from external

investors. Here we assume that a part or all of the external financing for a failed bank comes from
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the government (perhaps because the crisis is a systemic crisis, the private sector as a whole is short

of funding). The government’s funding is costly, e.g., the government has to forgo other projects

(opportunity cost) or it may have to borrow from foreign governments. For simplicity and without

loss of generality, we assume that the cost of the government’s funding is the risk-free interest rate

r. As r → 0 under Assumption 1’, we can regard the government’s funding cost as approaching

zero. When the government lends to failed banks, it can charge a higher net interest %, with % > 0.

The gain from the interest rate gap % will form the government’s interest income, which will be

distributed to all banks in the system as a lump-sum subsidy.

For simplicity, we also assume that the government can provide the deficit 1 − ` for sure as
long as a failed bank is willing to pay the interest rate %; that is, we set p (`) = 1 for simplicity. It

is easy to show that the total amount of interest income for the government is % (1− `)ω at time
t = t0 + ζ, where ω is the proportion of failed banks in the system.

Recalling (2), the payoff for a failed bank which borrows 1− ` at interest rate 1 + % becomes

Σ− (1− `) (1 + %) = `+ (Σ− 1)︸ ︷︷ ︸
NPV of project

− % (1− `)︸ ︷︷ ︸
PV of extra interest paid

.

Similar to the earlier analysis, the government will distribute monetary subsidy Λ to every bank at

t0 + ζ. Under the credit policy, the decentralized equilibrium condition (11) is replaced by

λ

1− exp [−λ (ζ − τ∗)] =
cH

(Σ + Λ)− [Σ− (1− `) (1 + %) + Λ]
(34)

or λ
1−exp[−λ(ζ−τ∗)] = cH

(1−`)(1+%) , where Σ− (1− `) (1 + %) + Λ is the payoff in the case of failure and

Σ + Λ is the payoff in the case of survival, and an individual bank understands that the refinancing

is costly in the case of failure and takes subsidy Λ as a given constant. It is easy to show that there

is a unique % that implements τ∗ = τSB. Also, as long as τSB is implemented, the second best

effi ciency is implemented. Corollary 3 follows.

Corollary 3 There exists a unique interest rate % that can implement the second best in the baseline

model.

By increasing the refinancing cost for failed banks, the government can implement the second

best. The credit policy is similar in spirit to a tax policy. We can regard the extra interest paid,

the term % (1− `) in the denominator on the RHS of (34), as an income tax on a failed bank, and
the tax revenue is then distributed among all banks. The difference here is that the tax is imposed

on the output of the investment (i.e., income tax), whereas the tax discussed earlier is imposed on

the input of the investment (i.e., capital tax).
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6 Complementarity payoff structure in a microfounded model

In this section, we provide a microfoundation for the payoff function (1) in a microfounded model

and show our main conclusions hold in this microfounded model. The microfoundation largely

follows the model of Romer (1990) on growth with expanding input varieties.

6.1 Setting

There is a continuum of banks, denoted by i ∈ [0, 1]. There is a representative firm in the speculative

sector. Banks can provide banking service (such as loan service) to the firm.

Firm. The firm, which operates in the speculative sector, has two parts of income, generated

from the two parts of its business. The first part is the production technology with banking service

as inputs; specifically, the production function is∫ ω(t)

0
[yi (t)]ε di,

where ε ∈ (0, 1), ω (t) is the measure of banks that provide banking service to the firm, and yi (t)

is the amount of banking service provided by bank i. This production function, borrowed from

Romer (1990), implies that different banks provide slightly different services, which are not perfect

substitutes (monopolistic competition) (see, e.g., Gerali et al. (2010) for the study of an imperfectly

competitive banking sector with monopolistic competition). The second part of income is from a

technology whose payoff depends on the economic fundamentals. For simplicity, we assume that

the second part of net income (profit) is θ (t), where θ (t) is the economic fundamentals, specified

in the baseline model. In order to operate its business (with two parts), the firm has to pay a fixed

operation cost, α, each period, where the fixed cost α can also be interpreted as the opportunity

cost or the reservation profit for the firm.

The firm maximizes its net profit in each period t by choosing the amount of banking service

{yi (t)} it demands, that is,

π (t) ≡ max
{yi(t)}

∫ ω(t)

0
[yi (t)]ε di−

∫ ω(t)

0
pi (t) yi (t) di+ θ (t)− α (35)

where the price of the firm’s product is normalized as one and pi (t) is the price of banking service

from bank i. When the net profit is negative, the firm would shut down its business, that is, its

participation condition is

π (t) ≥ 0.

Banks. In order to provide banking service to the speculative firm, bank i needs to form one
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unit of special capital (e.g., build a specific service system). The special capital is equivalent to

the invention of the blueprint of an input variety in Romer’s (1990) model. The special capital will

entitle bank i as a monopolist to receive perpetual banking service income (patent). However, bank

i can choose to liquidate (pull out) its special capital in the interim. The liquidation price is 1 if

the firm is still in operation. But when the firm is shutting down its business (corresponding to the

time point of the crisis in the baseline model), the special capital of all active banks is liquidated

at the same time and hence the liquidation price is the fire-sale price, specified as in the baseline

model. After obtaining their liquidation value, banks can reinvest in the traditional business sector

to obtain profit flow cL. In addition to building the special capital initially, bank i incurs cost

ψyi (t) to provide banking service yi (t) at period t, where ψ > 0 is the constant unit cost.

The first-order condition of (35) gives the demand function for bank i’s service, that is,

ε [yi (t)]ε−1 = pi (t) . (36)

Bank i chooses how much banking service to provide at period t to maximize its profit

max
yi(t)

pi (t) yi (t)− ψyi (t) ,

subject to the demand function given in (36).The first order condition over yi (t) gives

yi (t) =

(
ε2

ψ

) 1
1−ε

. (37)

Bank i’s profit flow hence is given by

cH ≡ ε
(
ε2

ψ

) ε
1−ε
− ψ

(
ε2

ψ

) 1
1−ε

=
(
ε− ε2

)(ε2

ψ

) ε
1−ε

,

which is a constant over time. Therefore, a bank’s profit flow here is the same as that specified in

our baseline model. Note that in equilibrium all banks choose the same amount of banking service

yi (t) to supply.

Endogenous crisis condition. By substituting (36) and (37) into (35), the firm’s net profit

is given by

π (t) = β · ω (t) + θ (t)− α,

where β ≡ (1− ε)
(
ε2

ψ

) ε
1−ε
. Considering the participation condition π (t) ≥ 0, the firm shuts down

its business when

θ (t) + β · ω (t) ≥ α.
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This gives the crisis condition in (1).13

All other components of the model setting, which we do not introduce here, such as the infor-

mation structure, are the same as in the baseline model.

6.2 Equilibrium

It is easy to see that individual banks’decision in the decentralized competitive equilibrium is the

same as in the baseline model. That is, Proposition 1 does not change. We focus on analyzing the

social planner’s second-best constrained problem. Paralleling (13), the objective function of the

social planner is revised as

max
τ

Ψ (τ , ζ) ≡
∫ t0+ζ−τ

t0

[
(ti + τ − t0) cH + Σ

] 1

η
dti +

∫ t0+η

t0+ζ−τ

[
ζcH + Π (`)

] 1

η
dti +

(
G
(
ωC
)
− ωC`

)
+

([∫ t0+τ

t0

β · 1 + θ (t)− α
]
dt+

∫ t0+ζ

t0+τ

[
β ·
(

1− t− (t0 + τ)

η

)
+ θ (t)− α

]
dt

)
︸ ︷︷ ︸

firm’s profit

,

(38)

while the constraints of the optimization problem are the same as in (13). The only difference of

the objective function (38) from that in (13) is the additional term, which is about the firm’s profit.

The first-order condition of Program (38) implies z (τ) = 0, where

z (τ) ≡ dΨ (τ , ζ (τ))

dτ
=


(1− ω) cH +

(
cH + dΠ(`)

d`
d`
dζ

)
dζ
dτ ω + (Π (`)− Σ) dωdτ

+
(
− d`
dζ

)
dζ
dτ ω + (1− ω)β︸ ︷︷ ︸

firm’s profit change (+)

 . (39)

Compared with the first-order condition (14) for the baseline model, the only difference in (39) is

the additional term, which reflects the firm’s profit change. Intuitively, when each bank increases

one unit of waiting time, the measure of active banks (namely ω (t)) increases by 1
η at each time

point during [t0 + τ , t0 + ζ], which generates the extra profit β ζ−τη = (1− ω)β for the firm prior

to the crisis. Note that we can add this term to the first term (which reflects survival banks’

payoff change) in (39) to have one term (1− ω)
(
cH + β

)
. Then, we can prove that the results in

Propositions 2 and 3 change only quantitatively, not qualitatively (see the proof in the appendix).

7 Conclusion

We present a model of credit-driven crises, providing a new perspective to explain why credit booms

are often followed by a financial crisis. In particular, our model provides a novel macroeconomic

13Product complementarity and search friction may also generate the payoff function (e.g., Hu and Varas, 2021).
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perspective on the dynamic interaction between credit expansions, crises, and recoveries. Our model

has both positive and normative implications. On the positive side, we show that asynchronous

awareness in the macroeconomic environment, which naturally requires coordination, results in a

delay in the responses of banks to their information, which in turn leads to a delayed financial

crisis. On the normative side, we show that such a delay in the responses is an over-delay, which

is socially ineffi cient. This is because of the existence of a negative externality: when individual

banks choose to extend credit for a longer time, the crisis is delayed longer and consequently more

banks are caught by the crisis, which depresses the fire-sale liquidation values for all caught banks.

At the macroeconomic level, fewer survival banks and lower liquidation values for failed banks both

contribute to more severe capital losses, so that it takes a longer time for the capital to accumulate

and for the aggregate output to recover to the pre-crisis level. We analyze policy implications of

the model.
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Appendix

A Equilibrium of the baseline model under Assumption 1

In this subsection, we study the equilibrium under the general Assumption 1. Here we give all the
differences from the results under Assumption 1’in Section 2, and we summarize these differences
using a series of propositions.

Clearly, Lemmas 1 and 2 and Corollary 1 are not affected by the general Assumption 1.

The decentralized competitive equilibrium

The individual bank ti’s optimization problem is given by

τ∗i = arg max
τ i



Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])︸ ︷︷ ︸
probability of survival

[∫ ti+τ i

ti

e−r(t−ti)cHdt+
cL

r
e−rτ i

]
︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τ i
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

[∫ ti+x

ti

e−r(t−ti)cHdt+ Π (`) e−rx
]

︸ ︷︷ ︸
payoff in the case of failure

dx


, (A.1)

where ` = ` (ζ) given in (5) and an individual bank takes ` as given, and Π (`) = `+ `
(
cL

r − 1
)
by

(2). The two probability terms in (9) are the same as those in Section 2.

The first-order condition of (A.1) implies

h ( t0 + ζ = ti + τ∗i | ti, τ∗i ) ≡
f (t0 + ζ = ti + τ∗i )

Pr (t0 + ζ ∈ (ti + τ∗i , ti + ζ])
=

cH − cL
cL

r −Π (`)
, (A.2)

that is,
λ

1− exp [−λ (ζ − τ∗i )]
=

cH − cL
cL

r −Π (`)
. (A.3)

As in Section 2, we also define

Γ (τ) ≡ h (τ , ζ)− cH − cL
cL

r −Π (`)
.

We have the following proposition.

Proposition 8 The decentralized competitive equilibrium, characterized by the pair (τ∗, ζ), is given
by (3), (A.3) and (12). There exists a unique equilibrium. Moreover, if parameter ζ0 is close to ζ
enough such that Γ (τ = 0) < 0, the unique equilibrium satisfies τ∗ > 0 (non-corner solution).
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The social planner’s second-best constrained problem

Suppose that the social planner cannot observe the shock time t0 either. But the social planner can
coordinate all banks to choose the same waiting length τ after being informed. Denote the arrival
time of the crisis by t = t0 + ζ. The second-best constrained problem for the social planner is given
by

max
τ


∫ t0+ζ−τ
t0

[ (∫ ti+τ
t0

e−r(s−t0)cHds
)

+e−r(ti+τ−t0) · cLr

]
1
ηdti +

∫ t0+η
t0+ζ−τ

[ (∫ t0+ζ
t0

e−r(s−t0)cHds
)

+e−r(t0+ζ−t0) ·Π (`)

]
1
ηdti

+e−rζ (G (ω)− ω`)


s.t. ζ =

τ + η

1 + κ
βη

given by (3)

ω = ω (t0 + ζ) = 1− ζ − τ
η

` = ` (ζ) given by (5), and Π (`) = `+ `

(
cL

r
− 1

)
. (A.4)

In the objective function, all the payoffs are discounted back to time t0 without loss of generality.14

Banks fall into two categories: early banks receiving information at ti ∈ [t0, t0 + ζ − τ ] and late
banks receiving information at ti ∈ (t0 + ζ − τ , t0 + η]. Early banks exit before the crisis and
survive, while late banks are caught by the crisis and fail. The first term in the objective function
is the payoff for the survival banks. A typical survival bank ti gets the continuous payoffflow cH in
the period [t0, ti + τ ] until its exit time ti + τ , and gets the payoff cL

r at its exit time by reinvesting
its full liquidation value L = 1. The second term in the objective function is the payoff for the
failed banks. A typical failed bank ti gets the continuous payoff flow cH in the period [t0, t0 + ζ]
until the crisis arrival time t = t0 + ζ, and gets the expected payoff Π (`) at the crisis arrival time
by reinvesting its partial liquidation value L = ` = ` (ζ) < 1. The third term is the payoff for the
asset buyers in the outside investor sector.

The first-order condition of (A.4) implies

(
cH − cL

) 1

η

er(ζ−τ) − 1

r︸ ︷︷ ︸
=(1−ω)(cH−cL) when r→0︸ ︷︷ ︸

survival banks’payoff change (+)

+

[
cH − rΠ (`) +

dΠ (`)

d`

d`

dζ

]
dζ

dτ
ω︸ ︷︷ ︸

failed banks’payoff change (−)

+

(
Π (`)− cL

r

)
dω

dτ︸ ︷︷ ︸
more banks caught (−)

+

[
(−r) dζ

dτ
(G (ω)− ω`)− d`

dζ

dζ

dτ
ω

]
︸ ︷︷ ︸

outside sector’s payoff change (+)


= 0,

(A.5)

where dζ
dτ = 1

1+κ
β
η ,

d`
dζ = −v, dΠ(`)

d` = cL

r , and
dω
dτ =

d
(

1− ζ−τ
η

)
dτ = − 1

η

(
dζ
dτ − 1

)
.

The first-order condition (A.5) highlights the benefit-cost tradeoff for the social planner in
choosing the optimal waiting length τ . An increase in τ has four effects on the payoffs in the
objective function of (A.4). First, a survival bank obtains the interest flow cH for a longer period
because the crisis is delayed. These banks’ exit time spreads over [t0 + τ , t0 + ζ], so the total

14 If the payoffs are discounted back to time t = 0, the objective function of (A.4) is simply altered by multiplying
it by a constant e−rt0 .
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discounted incremental payoffs are given by the first term on the LHS of (A.5). Second, a failed
bank also obtains the interest flow cH for a longer period; however, its expected reinvestment payoff
Π (`) is decreased due to a more delayed crisis. The net incremental payoff for failed banks is given

by the second term, which is negative by considering v
(
cL

r − 1
)
> cH . Third, a delayed crisis

results in some banks switching from survival banks to failed banks and each of such banks loses
cL

r − Π (`), which is the third term. The fourth term represents the payoff change for the outside
investor sector.

Denote the LHS of (A.5) by z (τ). First, observe that z
(
τ = ζ̄

)
< 0 under the parameter

condition v
(
cL

r − 1
)
> cH . This is because ζ = τ when τ = ζ̄, meaning the first term of z (τ) is

equal to zero, while the sum of the second term and the fourth term is negative. So the optimum

of (A.4) cannot be τ = ζ̄. Second, under the suffi cient condition that r relative to
v
(
cL

r
−1
)

cH
is small

enough (e.g., r < κ
β

2−
v

cH
+1

v

cH
+
v

(
cL
r −1

)
cH

), we have dz(τ)
dτ < 0, which implies that Program (A.4)

has a unique optimal τ .

Proposition 9 Under a suffi cient condition that r relative to
v
(
cL

r
−1
)

cH
is small enough, the social

planner has a unique optimal τ , denoted by τSB, which lies in τSB ∈
[
0, ζ̄
)
. Moreover, under a

suffi cient condition that
v
(
cL

r
−1
)

cH
is high enough,15 it follows that τSB = 0.

Comparison of the second best and the competitive equilibrium

Proposition 10 Under a suffi cient condition that
v
(
cL

r
−1
)

cH
is high enough, it follows that τSB ≤ τ∗

with strict inequality holding whenever τ∗ > 0 (non-corner solution).16 That is, the banks exit too
late in comparison with the second-best optimum.

When the first-order condition for the social planner is evaluated at the competitive equilibrium
solution pair (τ∗, ζ (τ∗)), it follows that

z (τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗))

=


(
cH − cL

)er(ζ−τ) − 1

rη
−

dω
dτ

h︸ ︷︷ ︸
>0

+

cH + (−v)

(
cL

r
− 1

)
︸ ︷︷ ︸
not internalized

− rΠ (`)

 dζ
dτ ω

−r dζdτ (G (ω)− ω`)



∣∣∣∣∣∣∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

.

(A.6)

15A suffi cient condition is
v

(
cL

r
−1

)
cH

≥
[
exp

(
rη

1+κ
β
η

)
− 1
] (

1
rη

)(
1 + κ

β
η
)2 (

1
κ
β
η

)
+ 1 (which implies

v

(
cL

r
−1

)
cH

≥
β
κη
+ 2 when r → 0).
16Clearly, a suffi cient condition to have the strict inequality τSB < τ∗ is the condition in Proposition 1 to guarantee

τSB = 0 jointly with the condition in Proposition 2 to guarantee τ∗ > 0.
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To fully characterize the externality, we conduct the following exercise. Suppose that a tiny pro-
portion $ of banks (labelled as type A) increase their τ∗ to τ∗+∆ while other banks (type B) keep
their τ∗. (Type-A banks are randomly drawn from the entire population; that is, type-A banks and
type-B banks have the identical information distribution over [t0, t0 + η] and differ only in waiting
strategy.) We examine how the payoff of type-B banks is affected. Denote the objective function
of the second best in (A.4) by Ψ (τ , ζ). When ∆ → 0, the externality to type-B banks (together
with outside investors as a whole) is characterized by

∂Ψ (τ , ζ)

∂ζ
= e−rζ

1

η

(
cL

r
−Π (`)

)
︸ ︷︷ ︸
part 1 externality (+)

+ ω

(−r) Π (`) + cH︸︷︷︸
part 2 (+)

+ (−v)

(
cL

r
− 1

)
︸ ︷︷ ︸

part 3 (−)

 e−rζ
+ (−r) e−rζ (G (ω)− ω`) . (A.7)

In (A.7), when type-A banks increase τ∗, the crisis is delayed for longer (i.e., ζ is increased).
An increase in ζ has three effects (externality) on type-B banks which keep τ∗.17 First, there is
positive externality, including two parts. A more delayed crisis causes some among type-B banks
which would otherwise fail to be able to successfully escape from being caught by the crisis and
each of such banks gains (part 1), by noting ∂(1−ω)

∂ζ = 1
η . A more delayed crisis also causes those

eventually failed banks among type-B banks to obtain the higher interest flow cH for a longer
period (part 2). Second, there is also negative externality on type-B banks (together with outside
investors as a whole). A more delayed crisis results in a lower liquidation price ` (ζ) for those
eventually failed banks among type-B banks and hence a lower social surplus Π (`)− ` (part 3), by
noting that d`

dζ
d(Π(`)−`)

d` = (−v)
(
cL

r − 1
)
. The part 3 corresponds to the “price impact”of a more

delayed crisis that individual banks do not internalize. Under a suffi cient condition that
v
(
cL

r
−1
)

cH

is high enough, the negative externality outweighs the positive externality (so the net externality
is negative), which is the root cause of the result τSB < τ∗.

B Proofs

Proof of Lemmas 1 and 2: The proof of Lemma 1 is straightforward based on the discussion
in the main text. As for Lemma 2, we assume that the parameter value ω0 satisfies ω0 < 1− ζ

η , so

it follows that ζ0 <
(

1− ζ

η

)
β
κ = ζ and hence ` (ζ) is strictly less than 1 on the domain ζ ∈

[
ζ, ζ̄
]
.

Proof of Propositions 1 and 8: We prove Proposition 8. Proposition 1 is just a special case
of Proposition 8. We study scenario t0 ≥ η + m. For clarity of the proof, we distinguish between
two cases of ζ < η and ζ ≥ η, which will nevertheless give the same first-order condition. We first
consider the case of ζ < η, which is guaranteed under a suffi cient parameter condition ζ̄ = β

κ < η
(recalling Lemma 1). Under this case, an individual bank’s optimal waiting time must satisfy
τ i ∈ [0, ζ]. For the individual bank that receives information at ti, it expects that the crisis will

17The externality also includes the interest rate r-related terms in (A.7). But these terms are negative, so the net
externality must be negative if the sum of the other terms is negative.
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occur at t0 + ζ ∈ (ti, ti + ζ]. The first order condition of (A.1) implies
−f (t0 + ζ = ti + τ i)

[∫ ti+τ i
ti

e−r(t−ti)cHdt+ cL

r e
−rτ i

]
+ Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])

(
e−rτ icH + (−r) cLr e

−rτ i
)

+f (t0 + ζ = ti + τ i)
[∫ ti+τ i
ti

e−r(t−ti)cHdt+ Π (`) e−rτ i
]
 = 0, (B.1)

rewritten as Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])
(
cH − cL

)
= f (t0 + ζ = ti + τ i)

(
cL

r −Π (`)
)
. As shown

in the main text, the two terms are calculated as f (t0 + ζ = ti + τ i) = f (t0 = ti + x− ζ) =

φ (t0 = ti + x− ζ|ti) = λeλ(ζ−τi)

eλη−1
and Pr (t0 + ζ ∈ (ti + τ i, ti + ζ]) = Pr (t0 ∈ (ti + τ i − ζ, ti]) = Φ (t0 = ti|ti)−

Φ (t0 = ti + τ i − ζ|ti) = eλ(ζ−τi)−1
eλη−1

. In addition, h ( t0 + ζ = ti + τ∗i | ti, τ∗i ) ≡
f(t0+ζ=ti+τ

∗
i )

Pr(t0+ζ∈(ti+τ∗i ,ti+ζ])
=

λ
1−exp[−λ(ζ−τ∗i )]

. Hence, we have (A.2).

We then consider the case of ζ ≥ η. Under this case, an individual bank’s optimal waiting time
must satisfy τ i ∈ [ζ − η, ζ]; that is, even for the last bank in the queue which receives information at
time t0+ η , it still takes time length ζ−η for the crisis to come after the bank receives information,
so an individual bank must choose τ i ≥ ζ − η. The individual bank ti’s optimization problem is

τ∗i = arg max
τ i∈[ζ−η,ζ]

 Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])
[∫ ti+τ i
ti

e−r(t−ti)cHdt+ cL

r e
−rτ i

]
+
∫ x=τ i
x=ζ−η f (t0 + ζ = ti + x)

[∫ ti+x
ti

e−r(t−ti)cHdt+ Π (`) e−rx
]
dx

 . (B.2)

In (B.2), for the individual bank ti, it knows that the crisis will occur at the earliest at t = ti+(ζ − η)
and at the latest at t = ti + ζ. Thus, when the individual bank chooses its exiting time as
ti + τ i, it knows that there are two possibilities: t0 + ζ ∈ [ti + ζ − η, ti + τ i] ∪ (ti + τ i, ti + ζ]. If
t0 + ζ ∈ (ti + τ i, ti + ζ] is realized, bank ti survives. If t0 + ζ ∈ [ti + ζ − η, ti + τ i]) is realized, the
bank fails at the crisis arrival time ti + x, where x ∈ [ζ − η, τ i]. The first-order condition of (B.2)
also yields (B.1).

Next, we analyze the equilibrium solution given by Γ (τ∗) = 0, where Γ (τ) ≡ h (τ , ζ)− cH−cL
cL

r
−Π(`)

.

From Lemma 1, we have 0 < dζ
dτ < 1, and thus h (τ , ζ (τ)) is increasing in τ . Also, Π (` (ζ)) is

decreasing in τ . Overall, Γ (τ) is decreasing in τ . Moreover, when τ = ζ̄, it follows h (τ , ζ) = ∞
and Γ

(
τ = ζ̄

)
> 0. Therefore, if Γ (τ = 0) < 0, there is a unique equilibrium with non-corner

solution τ∗ > 0; otherwise, there is a unique equilibrium with corner solution τ∗ = 0. Also,

considering that c
L

r −Π (`) = cL

r −
[
`+ `

(
cL

r − 1
)]
with ` = 1− v · (ζ − ζ0) (so cL

r −Π (`)
∣∣∣
τ=0
→ 0

when ζ0 → ζ), we have Γ (τ = 0) < 0 if parameter ζ0 is close to ζ enough.

We also consider scenario t0 < η + m. For clarity of presentation of the proof, we simply set
m = 0 here. The proof for this scenario closely follows Abreu and Brunnermeier (2002) (see the
proof of Proposition 1 on pages 358-359 in their paper). In the first step, given that the crisis occurs
at t0 + ζ, find an individual bank’s optimal τ i. 1) For bank ti > ζ, it does not have additional
information. It chooses τ∗i = τ∗, where τ∗ solves the first order condition

λ

1− exp [−λ (ζ − τ∗)] =
cH − cL
cL

r −Π (`)
(B.3)

shown in (A.3). 2) For bank ti < ζ, the bank knows that the crisis occurs earliest at time ζ (when
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t0 = 0) and it still takes at least time length ζ− ti for the crisis to come after receiving information
before the crisis will hit, so it must choose τ i ≥ ζ − ti. Hence, τ∗i = max (τ∗, ζ − ti) for bank
ti < ζ, where τ∗ solves the first order condition (B.3). In the second step, given banks’updated
strategy (τ∗i = max (τ∗, ζ − ti) for bank ti < ζ, and τ∗i = τ∗ for other banks), we confirm that the
crisis occurs at time t0 + ζ, where ζ is given by ζ = τ∗+η

1+κ
β
η . By the condition τ

∗
i = max (τ∗, ζ − ti),

only those banks with ti ≤ ζ − τ∗choose τ∗i = ζ − ti and hence they exit the speculative sector
no later than time ζ, implying that those banks exit before the crisis arrival time by considering
ζ ≤ t0 + ζ. Therefore, up to the crisis arrival time t0 + ζ, the accumulated pressure of exiting is
still x (t0 + ζ) = (t0+ζ)−(t0+τ∗)

η = ζ−τ∗
η . By the crisis condition, we have ζ = τ∗+η

1+κ
β
η . Intuitively, the

updated strategy of some banks only changes the density distribution of exiting before the crisis
arrival time, but does not change the accumulated amount of exiting up to the crisis arrival time.

Proof of Propositions 2 and 9: We prove Proposition 9. Proposition 2 is just a special case of

Proposition 9. By Lemma 2, ` (ζ) < 1 for any τ ≥ 0. Hence, Π (L) = Π (`) = ` + `
(
cL

r − 1
)
with

` < 1 in (A.4). We can simplify the objective function in (A.4) as follows:

max
τ

{∫ ζ

τ

[
e−rt

cL

r
+ cH

1− e−rt
r

]
1

η
dt+ ω

[
e−rζΠ (`) + cH

1− e−rζ
r

]
+ e−rζ (G (ω)− ω`)

}
. (B.4)

The first-order condition of (B.4) implies
(
cH − cL

)
1
η
er(ζ−τ)−1

r +
[
cH − rΠ (`) + dΠ(`)

d`
d`
dζ

]
dζ
dτ ω +

(
Π (`)− cL

r

)
dω
dτ

+
[
(−r) dζdτ (G (ω)− ω`)− d`

dζ
dζ
dτ ω

]  = 0, (B.5)

where we use dω
dτ =

d
(

1− ζ−τ
η

)
dτ = − 1

η

(
dζ
dτ − 1

)
. Under the parameter condition v

(
cL

r − 1
)
> cH , the

second term in (B.5) is negative because cH + dΠ(`)
d`

d`
dζ < 0 by using dΠ(`)

d` = 1 +
(
cL

r − 1
)
.

Denote the LHS of (B.5) by z (τ). First, observe that z
(
τ = ζ̄

)
< 0, because ζ = τ when

τ = ζ̄ and thus the first term of z (τ) is equal to zero and also the sum of the second term and the

fourth term is negative by cH + dΠ(`)
d`

d`
dζ −

d`
dζ = cH −

(
cL

r − 1
)
v < 0. Second, we have

dz(τ)
dτ =

(
cH − cL

) er(ζ−τ)

η

(
dζ

dτ
− 1

)
︸ ︷︷ ︸

−

+
dΠ (`)

d`
(−v)

dζ

dτ

dω

dτ︸ ︷︷ ︸
−

+ (−r) dζ
dτ

(
ωv

dζ

dτ

)
︸ ︷︷ ︸

−

+

rdΠ (`)

d`
v

(
dζ

dτ

)2

ω︸ ︷︷ ︸
+

+

cH +

(
dΠ (`)

d`
− 1

)
d`

dζ︸ ︷︷ ︸
+/−

− rΠ (`)

 dζ
dτ

dω
dτ

 ,
(B.6)

by considering cH > cL, 0 < dζ
dτ < 1, and dω

dτ = − 1
η

(
dζ
dτ − 1

)
. Collecting all positive terms and

r-independent negative terms in (B.6) and considering ω ≤ 1, we find a suffi cient condition to

guarantee dz(τ)
dτ < 0, which is r dΠ(`)

d` v
(
dζ
dτ

)2
+
[
cH +

(
dΠ(`)
d` − 1

)
(−v)

]
dζ
dτ

dω
dτ + dΠ(`)

d` (−v) dζdτ
dω
dτ < 0,
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rewritten as

r <
κ

β

2− v + cH

v + v
(
cL

r − 1
)
 , (B.7)

by using dζ
dτ = 1

1+κ
β
η . Note that the RHS of (B.7) is decreasing in r, so the inequality (B.7) gives

a unique threshold of r. To summarize, under a suffi cient condition of (B.7) (which is guaranteed
under Assumption 2 and r < κ

β ), Program (A.4) has a unique optimum τSB ∈
[
0, ζ̄
)
.

Next, we show a suffi cient condition to guarantee τSB = 0. Given the suffi cient condition for a
unique equilibrium in (B.7), we only need to ensure z (τ = 0) ≤ 0, that is,

(
cH − cL

) er(ζ−τ) − 1

r

1

η︸ ︷︷ ︸
+

+

cH − v
(
cL

r
− 1

)
︸ ︷︷ ︸

−

− rΠ (`)

 dζ
dτ ω +

(
Π (`)− cL

r

)
dω

dτ︸ ︷︷ ︸
−

+ (−r) dζ
dτ

(G (ω)− ω`)︸ ︷︷ ︸
−

≤ 0,

(B.8)

where ` = ` (ζ) < 1, ζ = τ+η
1+κ

β
η and (ζ − τ)|τ=0 = η

1+κ
β
η , and ω = 1 − ζ−τ

η = 1 − 1
1+κ

β
η =

κ
β
η

1+κ
β
η . A

suffi cient condition for (B.8) to be true is cH er(ζ−τ)−1
r

1
η +

[
cH − v

(
cL

r − 1
)]

dζ
dτ ω

∣∣∣
τ=0
≤ 0, that is,

v
(
cL

r − 1
)

cH
≥
[

exp

(
rη

1 + κ
βη

)
− 1

](
1

rη

)(
1 +

κ

β
η

)2
(

1
κ
βη

)
+ 1, (B.9)

which becomes
v
(
cL

r
−1
)

cH
≥ β

κη + 2 when r → 0.

Proof of Propositions 3 and 10: We prove Proposition 10. Propositions 3 is just a special
case of Proposition 10. Since ẑ (τ∗i = τ∗, ζ (τ∗)) ∝ Γ (τ∗i = τ∗, ζ (τ∗)) = 0, we have

z (τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗))
dω
dτ
h

=


(
cH − cL

)er(ζ−τ) − 1

rη
−

dω
dτ

h︸ ︷︷ ︸
>0

+

cH − v

(
cL

r
− 1

)
︸ ︷︷ ︸
not internalized

− rΠ (`)

 dζ
dτ ω

−r dζdτ (G (ω)− ω`)



∣∣∣∣∣∣∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

,

(B.10)

where h = λ
1−exp[−λ(ζ−τ)] ≥ lim

λ→0

λ
1−exp[−λ(ζ−τ)] = 1

ζ−τ and
dω
dτ = 1

η

(
1− dζ

dτ

)
, and hence

dω
dτ
h ≤(

1− dζ
dτ

)
ζ−τ
η < 1− ω. Also because er(ζ−τ)−1

rη ≥ lim
r→0

er(ζ−τ)−1
rη = 1− ω, we have er(ζ−τ)−1

rη −
dω
dτ
h > 0.

49



A suffi cient condition to ensure z (τ∗, ζ (τ∗)) < 0 in (B.10) is

cH
er(ζ−τ) − 1

rη
+

[
cH − v

(
cL

r
− 1

)]
dζ

dτ
ω

∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

≤ 0. (B.11)

As the LHS of (B.11) is decreasing in τ , a suffi cient condition for (B.11) to be true is

cH
er(ζ−τ) − 1

r

1

η
+

[
cH − v

(
cL

r
− 1

)]
dζ

dτ
ω

∣∣∣∣∣
(τ ,ζ)=(0,ζ)

≤ 0,

which gives the same condition as (B.9).

Considering that parameter ω0 and thereby ζ0 help to pin down the condition for the non-corner
solution of τ∗, there are three cases for the comparison between τSB and τ∗: τSB = τ∗ = 0 if ζ0 ≤
ζ∗0, and τ

SB = 0 < τ∗ or 0 < τSB < τ∗ if ζ0 > ζ∗0, where ζ
∗
0 is a threshold lying in ζ

∗
0 ∈

[
0, ζ
)
.

Proof of Lemma 3: Recalling Proposition 2, under r → 0, the total derivative is z (τ) ≡
dΨ(τ ,ζ(τ))

dτ = (1− ω) cH + (Π (`)− Σ) dωdτ +
[
cH + (−v) (Σ− 1)

] dζ
dτ ω, where

dζ
dτ = 1

1+κ
β
η , ω = 1− ζ−τ

η ,

and dω
dτ = − 1

η

(
dζ
dτ − 1

)
. Also, we can calculate that under r → 0, the two partial derivatives are

∂Ψ(τ ,ζ)
∂ζ = (Σ−Π (`)) 1

η + ω
[
cH + (−v) (Σ− 1)

]
and ∂Ψ(τ ,ζ)

∂τ = (1− ω) cH − 1
η (Σ−Π (`)). Clearly,

z (τ) ≡ dΨ(τ ,ζ(τ))
dτ = ∂Ψ(τ ,ζ)

∂τ + dζ
dτ

∂Ψ(τ ,ζ)
∂ζ .

Recalling (10), ẑ (τ i, ζ) = Pr (t0 + ζ ∈ (ti + τ i, ti + ζ]) cH−f (t0 + ζ = ti + τ i) (Σ−Π (`)). Hence,
lim
λ→0

ẑ (τ i = τ , ζ) = (1− ω) cH − 1
η (Σ−Π (`)), by considering lim

λ→0
Pr (t0 + ζ ∈ (ti + τ , ti + ζ]) =

lim
λ→0

eλ(ζ−τ)−1
eλη−1

= ζ−τ
η = 1−ω and lim

λ→0
f (t0 + ζ = ti + τ) = lim

λ→0

λeλ(ζ−τ)

eλη−1
= 1

η . Therefore, under λ→ 0,

it follows that ẑ (τ i = τ , ζ) = ∂Ψ(τ ,ζ)
∂τ and z (τ)− ẑ (τ i = τ , ζ) = dζ

dτ
∂Ψ(τ ,ζ)
∂ζ .

Proof of Corollary 1: The measure of banks that reallocate resource to invest in the traditional

business sector is given by ζ−τ
η +

(
1− ζ−τ

η

)
p (`) = ζ−τ

η [1− p (`)] + p (`). The first-order derivative

with respect to τ implies

d
{
ζ−τ
η [1− p (`)] + p (`)

}
dτ

=
d
(
ζ−τ
η

)
dτ

[1− p (`)] +
dp (` (ζ))

dτ

[
1−

(
ζ − τ
η

)]
< 0,

because
d
(
ζ−τ
η

)
dτ < 0, dp(`(ζ))dτ < 0, and ζ−τ

η < 1. As τ is higher in the competitive case than in the
second best case, fewer banks will grab the new investment opportunity in the competitive case.

Proof of Proposition 4: i) Given that all banks use the same (symmetric) strategy by choosing
a length of stay m+ τ , find the arrival time of the crisis, denoted by t0 + ζ. Given the strategy, the
first bank exits from the speculative sector at t = ts + (m+ τ) = t0 + τ . Similar to the procedure
to derive Lemma 1, we can find that ζ is given by (3), i.e., ζ = τ+η

1+κ
β
η . Clearly,

dζ
dτ = 1

1+κ
β
η ∈ (0, 1).

Because the crisis must occur after t = t0, we have ζ ≥ 0, which implies τ ≥ −η. That is, we have
the lower bound of τ . We revise Lemma 1 by expanding the support of τ with allowing τ to take a
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negative value. Hence, ζ is bounded by ζ ∈
[
0, ζ̄
]
, where ζ = 0 at τ = −η and ζ = ζ̄ = β

κ at τ = ζ̄.

ii) The liquidation value is still given by (5) (see Lemma 2). That is, the liquidation value or
the loan recovery value for a bank caught by the crisis is given by

` ≡ ` (ζ) =

{
1

1− v · (ζ − ζ0)

when ζ ≤ ζ0

when ζ > ζ0

, (B.12)

where v ≡ γ κβ and ζ0 ≡ ω0
β
κ , which has the property that

d`
dζ = −v < 0 for ζ > ζ0.

The liquidation value in (B.12) can be ` = 1 (i.e., if ζ ≤ ζ0), while the liquidation value in
Lemma 2 always satisfies ` < 1. For future reference, we define τ0 such that ζ (τ = τ0) = ζ0 based

on (3), which gives τ0 ≡
[
1 + κ

βη
]
ζ0 − η > −η. As ω0 is a small positive constant, τ0 is slightly

above −η. The economic meaning of τ0 is the threshold of τ above which the equilibrium fire-sale
price ` < 1 (i.e., having a discount).

iii) The social planner’s second-best constrained problem Conditional on the entry
strategy of individual banks, the social planner chooses the optimum τSB as follows:

max
τ


∫ ts+ζ−τ
ts

[∫ ti
ts
e−r(s−ts)cLds+

∫ ti+m+τ
ti

e−r(s−ts)cHds+ e−r(ti+m+τ−ts) · cLr
]

1
ηdti

+
∫ ts+η
ts+ζ−τ

[∫ ti
ts
e−r(s−ts)cLds+

∫ ts+m+ζ
ti

e−r(s−ts)cHds+ e−r(ts+m+ζ−ts) · Π (`)
]

1
ηdti

+e−r(m+ζ)
(
G
(
ωC
)
− ωC`

)


s.t. ζ =
τ + η

1 + κ
βη

given by (3), ωC ≡ ω (t = t0 + ζ) = 1− ζ − τ
η

` = ` (ζ) given by (B.12), and Π (`) = `+ `

(
cL

r
− 1

)
. (B.13)

In the objective function, all the payoffs are discounted back to time ts without loss of generality.
Banks fall into two categories: early banks receiving information at ti ∈ [ts, ts + ζ − τ ] and late
banks receiving information at ti ∈ (ts + ζ − τ , ts + η]. The first term in the objective function
is the payoff for the first category of banks which exit before the crisis. A typical bank ti stays
in the traditional sector in the period [ts, ti] with cash flow cL, and then enters and stays in the
speculative sector in the period [ti, ti +m+ τ ] for time length m+ τ with cash flow cH , and finally
exits safely at t = ti +m+ τ with the reinvestment value cL

r . The second term is the payoff for the
second category of banks which are caught by the crisis. A typical bank ti stays in the traditional
sector in the period [ts, ti] with cash flow cL, and then enters and stays in the speculative sector
until the crisis arrival time t = ts +m+ ζ with cash flow cH , and finally exits at the crisis arrival
time with the expected reinvestment value Π (`). The third term is the payoff for the asset buyers
(outside investors).

The first-order condition of Program (B.13) implies

z (τ) =


(
cH − cL

)
1
η
er(ζ−τ)−1

r +
[
cH − rΠ (`) + dΠ(`)

d`
d`
dζ

]
dζ
dτ ω +

(
Π (`)− cL

r

)
dω
dτ

+
[
(−r) dζdτ (G (ω)− ω`)− d`

dζ
dζ
dτ ω

]  = 0, (B.14)

which is in the exact same form as the first-order condition (B.5).

We discuss two ranges of τ , namely, τ ∈ [−η, τ0) and τ ∈
[
τ0, ζ̄

]
. Over the first range τ ∈

[−η, τ0), we have z (τ) > 0, by considering that in this case ` (ζ) = 1 and Π (`) = cL

r . Intuitively,
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there is no cost by setting a higher τ in this first range for the social planner. So the optimum must
be τSB ≥ τ0. Over the second range τ ∈

[
τ0, ζ̄

)
, it follows that d`

dζ = −v, so the signs of all terms
of z (τ) in (B.14) are the same as in (B.5). Consequently, the condition for z′ (τ) < 0 is the same

as that in Proposition 9; namely, under a suffi cient condition that r relative to
v
(
cL

r
−1
)

cH
is small

enough (e.g., r < κ
β

2−
v

cH
+1

v

cH
+
v

(
cL
r −1

)
cH

), we have dz(τ)
dτ < 0, which implies that Program (B.13)

has a unique optimal τ . We also show in the proof of Proposition 9 that z
(
τ = ζ̄

)
< 0. Overall,

there exists a unique optimum τSB ∈ [τ0, ζ̄) for Proposition 4.

We find a suffi cient condition to guarantee τSB = τ0. Given the suffi cient condition for a unique
equilibrium, we only need to ensure z (τ = τ0) ≤ 0, i.e.,

(
cH − cL

) er(ζ−τ) − 1

r

1

η︸ ︷︷ ︸
+

+

cH − v
(
cL

r
− 1

)
︸ ︷︷ ︸

−

− rΠ (`)

 dζdτ ω +

(
Π (`)− cL

r

)
dω

dτ︸ ︷︷ ︸
−

+ (−r) dζ
dτ

(G (ω)− ω`)︸ ︷︷ ︸
−

≤ 0, (B.15)

where ζ = ζ0, ` = 1, Π (`) = cL

r , ω = 1 − ζ0−τ0
η = κ

β ζ0, and
dζ
dτ = 1

1+κ
β
η . A suffi cient condition for

(B.15) to be true is cH er(ζ0−τ0)−1
r

1
η +

[
cH − v

(
cL

r − 1
)]

1
1+κ

β
η
κ
β ζ0 ≤ 0, that is,

v
(
cL

r − 1
)

cH
≥ er(ζ0−τ0) − 1

rη

(
1 +

κ

β
η

)
1
κ
β ζ0

+ 1, (B.16)

which becomes
v
(
cL

r
−1
)

cH
≥ ζ0−τ0

η

(
1 + κ

βη
)

1
κ
β
ζ0

+ 1 as r → 0.

iv) The decentralized competitive equilibrium Conditional on the entry strategy of
individual banks, the decentralized equilibrium is characterized by the pair (τ∗, ζ). Given ζ, find
the optimal strategy τ∗i for an individual bank ti. The individual bank ti’s optimization problem
in choosing its length of stay, m+ τ i, is given by

τ∗i = arg max
τ i



Pr (t0 + ζ ∈ (ti +m+ τ i, ti +m+ ζ])︸ ︷︷ ︸
probability of survival

[∫ ti+m+τ i

ti

e−r(t−ti)cHdt+
cL

r
e−r(m+τ i)

]
︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τ i
x=0 f (t0 + ζ = ti +m+ x)︸ ︷︷ ︸

density of failure

[∫ ti+m+x

ti

e−r(t−ti)cHdt+ Π (`) e−r(m+x)

]
︸ ︷︷ ︸

payoff in the case of failure

dx


,

(B.17)

where ` = ` (ζ) given in (B.12) and an individual bank takes ` as given, and Π (`) = `+ `
(
cL

r − 1
)
.
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The first-order condition of (B.17) implies

λ

1− exp [−λ (ζ − τ∗i )]
=

cH − cL
cL

r −Π (`)
. (B.18)

In (B.18), ` can be ` = 1 (e.g., if τ∗ = −η and thus ζ = 0), in which case Π (`) = cL

r . Also, Π (`) is
a continuous function at ` = 1 (recalling (2)).

Define Γ (τ) ≡ h (τ , ζ) − cH−cL
cL

r
−Π(`)

. The equilibrium solution is given by Γ (τ∗) = 0. As in

Proposition 1, Γ (τ) is increasing in τ which implies no multiple equilibria. Notice that Γ
(
τ = ζ̄

)
> 0

by considering that h (τ , ζ) = ∞ when τ = ζ̄. In addition, Γ (τ = τ0) < 0 since Π (`)|τ=τ0
= cL

r .
Therefore, there exists a unique equilibrium τ∗ ∈

(
τ0, ζ̄

)
. In equilibrium, ζ > ζ0 and ` < 1.

v) Entry conditions We have two entry conditions to ensure that banks immediately enter
the speculative sector upon receiving their private information about the arrival of ts. The two entry
conditions apply to both the second-best constrained problem and the decentralized competitive
equilibrium. First, denote by EV (tj) the expectation of the sum of the discounted values in the
period t ∈ [tj ,+∞) for a bank that has not received information by time tj but decides to enter
the speculative sector at time tj . To ensure that an uninformed bank has no incentive to enter the
speculative sector, a suffi cient condition is

EV (tj) <
cL

r
for any tj , (B.19)

where cL

r is the value a bank can get if it keeps operating in the traditional sector. Second, a bank
has incentives to enter the speculative sector immediately after receiving its private information,
which requires

∫ ζ−τ

0

λeλt

eλη − 1

[
cH

r

(
1− e−(m+τ)r

)
+ cL

r e
−(m+τ)r

]
dt+

∫ η

ζ−τ

λeλt

eλη − 1

[
cH

r

(
1− e−(m+ζ−t)r)

+Π (`) e−(m+ζ−t)r

]
dt >

cL

r
. (B.20)

In (B.20), the bank expects that it will fall into one of two categories: an early bank receiving
information at t ∈ [ts, ts + ζ − τ ] and a late bank receiving information at t ∈ [ts + ζ − τ , ts + η].

(1) We examine the first entry condition – the condition where an uninformed bank has no
incentive to enter the speculative sector. A suffi cient condition is that λ is small enough. Intuitively,
when λ is small, with high probability the arrival of the shock time ts is far away from now, so it
is not optimal to enter the speculative sector now as long as there is no private signal yet.

Here we make a simplified assumption that if an uninformed bank entering the speculative
sector finds the good fundamentals (α) have not come yet, the bank will stay put and wait until
the speculative sector becomes profitable; that is, there are unmodeled frictions such that it is too
costly for a bank to exit immediately after entry when the speculative sector is in the infancy stage.

Concretely, we find a suffi cient condition to guarantee EV (tj) <
cL

r for any tj . We analyze two
cases: tj > η and tj ≤ η. For the first case of tj > η, the bank knows ts ≥ tj − η > 0, that is,
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ts ∈ [tj − η, tj) ∪ [tj ,+∞). The conditional density of ts is then given by

φ(ts|tj) =


ts−(tj−η)

η
λe−λ[ts−(tj−η)]

1
λη

(1−e−λη)

λe−λ[ts−(tj−η)]
1
λη

(1−e−λη)

for ts ∈ [tj − η, tj)
for ts ∈ [tj ,+∞)

.

Thus,

EV (tj) =

∫ tj

tj−η
φ(ts|tj)V (tj |ts) dts +

∫ +∞

tj

φ(ts|tj)e−r(ts−tj)V (tj |ts) dts, (B.21)

where V (tj |ts) is the bank value (discounted back to the start point to have positive profits) by
entering the speculative sector at time tj , conditional on the profitable shock occurring at ts. To
evaluate (B.21), we define V (m+ ζ) =

∫m+ζ
0 e−rtcHdt +

∫ +∞
m+ζ e

−rtcLdt, which is the value for a
bank that enters the speculative sector at time tj , stays there for time length m + ζ, and exits
safely. It is easy to show that

EV (tj) < EV (m+ ζ) ≡
∫ tj

tj−η
φ(ts|tj)V (m+ ζ) dts +

∫ +∞

tj

φ(ts|tj)e−r(ts−tj)V (m+ ζ) dts.

Clearly, lim
λ→0

EV (m+ ζ) = 0. Since EV (m+ ζ) is continuous in λ, it follows that EV (tj) <
cL

r for

any tj > η under a suffi cient condition that λ is small enough.

Similarly, we can examine the second case of tj ≤ η, and find that under a suffi cient condition
that λ is small enough, EV (tj) <

cL

r for any tj ≤ η .
(2) We examine the second entry condition – the condition where an informed bank has

incentives to enter the speculative sector immediately. For a bank that receives information at time
ti and enters the speculative sector immediately, there are two possibilities: (a) If ts ∈ [ti−ζ+τ , ti],
then bank ti can exit the speculative sector safely, after a period ofm+τ . (b) If ts ∈ [ti−η, ti−ζ+τ),
then bank ti will get caught by the crisis. The expected value for bank ti over ts ∈ [ti − ζ + τ , ti]

is
∫ ζ−τ

0
λeλt

eλη−1

[
cH

r

(
1− e−(m+τ)r

)
+ cL

r e
−(m+τ)r

]
dt, and the expected value for bank ti over ts ∈

[ti − η, ti − ζ + τ) is
∫ η
ζ−τ

λeλt

eλη−1

[
cH

r

(
1− e−r(m+ζ−t))+ Π (`) e−r(m+ζ−t)

]
dt. So we have (B.20).

Denote by EU (ti) the LHS of (B.20). It follows that lim
m→+∞

EU (ti) = cH

r > cL

r . Therefore, when

m is high enough, an informed bank enters the speculative sector immediately.

vi) Same as Proposition 3, under a suffi cient condition of (B.16), it follows that τSB < τ∗.

Proof of Lemma 4: As in the model in Section 3, we have the following result. The crisis
occurs at t = t0 + ζ, where ζ as a function of τ is given by (3), which has the property that
dζ
dτ = 1

1+κ
β
η ∈ (0, 1). Moreover, ζ is bounded by ζ ∈

[
0, ζ̄
]
, where ζ = 0 at τ = −η and ζ = ζ̄ = β

κ at

τ = ζ̄. By the crisis condition, θ (t0 + ζ) + β · ω (t0 + ζ) = α, where θ (t0 + ζ) = α − κζ. We have
ωC = ω (t0 + ζ) = κ

β ζ. Based on the fire-sale price function in (22), it follows that ` = `
(
ωC
)

={
1

exp
[
−γ ·

(
κ
β ζ − ω0

)] when κ
β ζ ≤ ω0

when κ
β ζ > ω0

; that is, ` =

{
1

exp [−v (ζ − ζ0)]

when ζ ≤ ζ0

when ζ > ζ0

, where

v ≡ γ κβ and ζ0 ≡ ω0
β
κ . It is obvious that

d`
dζ = −`v < 0 for ζ > ζ0.
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Proof of Proposition 5: The proof of part 1) on entry conditions is the same as that in the proof
of Proposition 6 (see there). We proceed to prove part 2). The first order condition of Program
(28) implies

f (t0 + ζ = ti +m+ x)

Pr (t0 + ζ ∈ (ti +m+ τ i, ti +m+ ζ])
=

∂U(k(ti),m+τ i,1)
∂τ i

U(k (ti) ,m+ τ i, 1)− U(k (ti) ,m+ x, `)
,

that is, λ
1−exp[−λ(ζ−τ∗i )]

= a−z
− log ` , where we define a ≡ A−ρ− δ > 0 and z ≡ Z−ρ− δ > 0. Because

τ∗i = τ∗, we consider the fixed-point problem

λ

1− exp [−λ (ζ (τ)− τ)]
=

a− z
− log `

, (B.22)

where function ζ (τ) is given by (3) and ` = ` (ζ) is given in (23). Clearly, the solution τ to equation
(B.22) must satisfy τ > τ0, by noting that when τ ≤ τ0, we have ζ ≤ ζ0 and ` = 1.

We consider the possible solution τ to equation (B.22) in the range of τ ∈
(
τ0, ζ̄

]
, under which

` in (B.22) is ` = exp [−v (ζ − ζ0)]. Define LF (τ) ≡ λ
1−exp[−λ(ζ−τ)] ; since ζ − τ is decreasing in

τ , LF (τ) is increasing in τ , and lim
τ→ζ̄

LF (τ) = +∞. Define RF (τ) ≡ a−z
v[ζ(τ)−ζ0] ; it is obvious that

RF (τ) is decreasing in τ , and lim
τ→τ0

RF (τ) = lim
ζ→ζ0

a−z
v[ζ−ζ0] → +∞. So there exists a unique solution

τ∗ ∈
(
τ0, ζ̄

)
.

Proof of Proposition 6: i) Define τ0 ≡
[
1 + κ

βη
]
ζ0 − η > −η given by ζ (τ = τ0) = ζ0. As in

the proof of Proposition 4, the optimum must be τSB ≥ τ0. So we only need to focus on τ ≥ τ0,
which means d`

dζ = −`v. The first order condition of Program (32) implies

z (τ) =



a− z
ρ

e(ζ−τ)ρ − 1

ρ

1

η︸ ︷︷ ︸
survival banks’gain (+)

+
dω

dτ

(
log `

ρ

)
︸ ︷︷ ︸

more failure banks (−)

+ ω
dζ

dτ


(
a− z
ρ
− log `

)
︸ ︷︷ ︸
higher productivity (+)

+
1

ρ

1

`

d`

dζ︸ ︷︷ ︸
lower price (−)


︸ ︷︷ ︸

failed banks’payoff change

+ (−1)
dζ

dτ
log

[
1 +

µ (G (q)− q`)
exp [logW0 + (t0 + ζ) z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1 + µ(G(q)−q`)
exp[logW0+(t0+ζ)z]

]
ρ︸ ︷︷ ︸

outside sector’s payoff change (+)

= 0



= 0,

(B.23)
where d`

dζ = −`v < 0. Under v > a − z and if ρ is small enough and µ is small enough, we have
z
(
τ = ζ̄

)
< 0 because ζ = τ and thus the first term of z (τ) is 0 and also the third term is negative
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and the fourth term is close to 0. Consequently, τSB ∈ [τ0, ζ̄). We find the second order condition:

z′ (τ) =
a− z
ρ

eρ(ζ−τ)

η

(
dζ

dτ
− 1

)
+
dω

dτ

dζ

dτ

[
1

ρ
(a− z) + vζ − 1

ρ
v

]
+ ω

dζ

dτ

[
v
dζ

dτ

]
+
dω

dτ

[
1

ρ
(−v)

dζ

dτ

]

+ (−1)µ
dζ

dτ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ

1 + µ(G(q)−q`)
exp[logW0+(t0+ζ)z]

+ µd

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1 + µ(G(q)−q`)
exp[logW0+(t0+ζ)z]

]
ρ

 /dτ .
Consider an extreme case where µ = 0 (so the last line inz′ (τ) is zero). Since (a−z)

ρ eρ(ζ−τ)
[
dζ
dτ − 1

]
<

0, a suffi cient condition for z′ (τ) < 0 can be written as

dω

dτ

dζ

dτ
(vζ) + ω

dζ

dτ

[
v
dζ

dτ

]
<
dω

dτ

dζ

dτ

[
1

ρ
(2v − (a− z))

]
.

Under v > a − z, the right-hand side goes to +∞ when ρ → 0. Meanwhile, it is obvious that the
left-hand side is a bounded function on τ ∈ [−η, ζ̄]. Therefore, there exists ρ̂ such that z′ (τ) < 0
holds for ρ < ρ̂. Since z′ (τ) is continuous in µ, there exists µ̂ such that z′ (τ) < 0 holds for µ < µ̂.
Overall, under a suffi cient condition that ρ is small enough and µ is small enough, z′ (τ) < 0, which
implies that there exists a unique equilibrium for the second best problem.

Similar to the proof of Proposition 4, we also find a suffi cient condition for τSB = τ0. This
requires z (τ = τ0) ≤ 0. Choosing µ = 0, since ζ = ζ0, ` = 1, dζdτ = 1

1+κ
β
η , and ω = 1− ζ0−τ0

η = κ
β ζ0,

we have z (τ = τ0) ≤ 0 which means that a−zρ
e(ζ0−τ0)ρ−1

ρ
1
η+ κ

β ζ0
1

1+κ
β
η

[
a−z
ρ −

v
ρ

]
≤ 0, which becomes

v

a− z ≥
e(ζ0−τ0)ρ−1

ρ
1
η

κ
β ζ0

1
1+κ

β
η

+ 1. (B.24)

Since z (τ = τ0) is continuous in µ, there exists µ̃ such that when µ < µ̃, z (τ = τ0) ≤ 0 under
(B.24). In sum, under a suffi cient condition that ρ is small enough, µ is small enough, and v

a−z is
high enough, the second best optimum is τSB = τ0.

ii) Similar to the model in Section 3, we have two entry conditions. First, denote by EV (tj) the
expectation of the sum of the discounted utility over t ∈ [tj ,+∞) for a bank that has not received
information by time tj but decides to enter the speculative sector at time tj . To ensure that an
uninformed bank has no incentive to enter the speculative sector, a suffi cient condition is

EV (tj) < V for any tj , (B.25)

where V ≡ log ρ+k(tj)
ρ + z

ρ2
is the sum of the discounted utility a bank can get if it keeps operating

in the traditional sector. Second, a bank has incentives to enter the speculative sector immediately
after receiving its private information, which requires

∫ ζ−τ

0

λeλt

eλη − 1

[
a 1
ρ2

− (a−z)
ρ2

e−(m+τ)ρ

]
dt+

∫ η

ζ−τ

λeλt

eλη − 1

[
a 1
ρ2
− (a−z)

ρ2
e−(m+ζ−t)ρ

+e−(m+ζ−t)ρ log `
ρ

]
dt > z

1

ρ2
. (B.26)

(1) We examine the first entry condition – the condition where an uninformed bank has no
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incentive to enter the speculative sector. A suffi cient condition is that λ is small enough. Intuitively,
when λ is small, with high probability the arrival of the shock time ts is far away from now, so it is
not optimal to enter the speculative sector now as long as there is no private signal yet. Again, here
we make a simplified assumption that if an uninformed bank entering the speculative sector finds
the good fundamentals (α) have not come yet, the bank will stay put and wait until the speculative
sector becomes profitable; that is, there are unmodeled frictions such that it is too costly for a bank
to exit immediately after entry when the speculative sector is in the infancy stage.

The proof is almost the same as the counterpart in the proof of Proposition 4. We only need
to redefine V (m+ ζ) as

V (m+ ζ) =
log ρ+ k (tj)

ρ
+ a

1

ρ2
− e−ρ(m+ζ)a− z

ρ2
.

(2) We examine the second entry condition – the condition where an informed bank has
incentives to enter the speculative sector immediately. For a bank that receives information at time
ti and enters the speculative sector immediately, there are two possibilities: (a) If ts ∈ [ti−ζ+τ , ti],
then bank ti can exit the speculative sector safely, after a period ofm+τ . (b) If ts ∈ [ti−η, ti−ζ+τ),
then bank ti will get caught by the crisis. The expected value for bank ti over ts ∈ [ti− ζ + τ , ti] is∫ ζ−τ

0

λeλt

eλη − 1

[
log ρ+ k (ti)

ρ
+ a

1

ρ2
− (a− z)

ρ2
e−(m+τ)ρ

]
dt,

and the expected value for bank ti over ts ∈ [ti − η, ti − ζ + τ) is∫ η

ζ−τ

λeλt

eλη − 1

[
log ρ+ k (ti)

ρ
+ a

1

ρ2
− (a− z)

ρ2
e−(m+ζ−t)ρ + e−(m+ζ−t)ρ log `

ρ

]
dt.

The total expected value needs be higher than V = log ρ+k(ti)
ρ + z 1

ρ2
, so we have (B.26). Denote by

EU (ti) the LHS of (B.26), and it follows that lim
m→+∞

EU (ti) = a 1
ρ2
> z 1

ρ2
. Therefore, when m is

high enough, an informed bank enters the speculative sector immediately.

Proof of Proposition 7: Based on the proof of Proposition 6, under a suffi cient condition that ρ
is small enough, µ is small enough, and v

a−z is high enough, the second best optimum is τSB = τ0.
In the proof of Proposition 5, we also show that the competitive equilibrium satisfies τ∗ ∈

(
τ0, ζ̄

)
.

Therefore, under a suffi cient condition that ρ is small enough, µ is small enough, and v
a−z is high

enough, we have τSB < τ∗.

We give a general proof of Proposition 7, similar to the proof of Proposition 3. Recalling function
z in (B.23), we find z (τ∗, ζ (τ∗)), the first-order condition for the social planner evaluated at the
competitive equilibrium solution pair (τ∗, ζ (τ∗)). Based on (B.22), define Γ (τ∗i , ζ) = h − a−z

− log ` ,
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where h = λ
1−exp[−λ(ζ−τ∗i )]

. Since Γ (τ∗i = τ∗, ζ (τ∗)) = 0, it follows that

z (τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗))
dω
dτ

hρ

=


a−z
ρ

e(ζ−τ)ρ−1
ρ

1
η +

(
a−z
ρ −

v
ρ − log `

)
ω dζdτ +

(
log `
ρ

)
dω
dτ

+ (−1) dζdτ log
[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ

− [(a− z)− (− log `)h]
dω
dτ
hρ



∣∣∣∣∣∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

=


a−z
ρ

e(ζ−τ)ρ − 1

ρη
−

dω
dτ

h︸ ︷︷ ︸
>0

+

a−z
ρ −

v

ρ︸︷︷︸
not internalized

− log `

 dζ
dτ ω

+ (−1) dζdτ log
[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ



∣∣∣∣∣∣∣∣∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

,

where the result of e
ρ(ζ−τ)−1
ρη −

dω
dτ
h > 0 is proved in the proof of Proposition 10. Since

dω
dτ
h > 0, a

suffi cient condition to ensure z (τ∗, ζ (τ∗)) < 0 is
a−z
ρ

e(ζ−τ)ρ−1
ρη + a−z

ρ
dζ
dτ ω

+ (−1) dζdτ log
[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ


∣∣∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

<

(
v

ρ
+ log `

)
dζ

dτ
ω

∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

= v

(
1

ρ
− (ζ − ζ0)

)
dζ

dτ
ω

∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

,

by noticing that τ∗ > τ0, ζ > ζ0, and thus log ` = −v (ζ − ζ0).

If ρ is small enough such that 1
ρ > ζ (τ∗) − ζ0, then the above suffi cient condition can be

rewritten as

v >

{
a−z
ρ

e(ζ−τ)ρ−1
ρη + a−z

ρ
dζ
dτ ω −

dζ
dτ log

[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ

}∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))[

1
ρ − (ζ − ζ0)

]
dζ
dτ ω

∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

.

(B.27)
Since τ∗ ∈

(
τ0, ζ̄

)
, ζ (τ∗) ∈

(
ζ0, ζ̄

)
and ω ∈ (κβ ζ0, 1) are all bounded, the RHS of (B.27) is bounded.

Combining these results, we have z (τ∗, ζ (τ∗)) < 0 and thus τSB < τ∗ under a suffi cient
condition that ρ is small enough (such that 1

ρ > ζ (τ∗)− ζ0) and v is high enough (such that (B.27)
is true), ceteris paribus.

Results in Section 4.3: We give the expression of Y (t). We divide time into five stages:
t ∈ [0, ts), [ts, ts + η), [ts + η, ts +m+ τ = t0 + τ), [t0 + τ , t0 + ζ), and [t0 + ζ,+∞). In the first
stage t ∈ [0, ts), all banks are operating in the traditional sector, so the aggregate output is given
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by
Y (t) = exp (k0 + zt) · Z.

In the second stage t ∈ [ts, ts + η), some banks have already entered the speculative sector by using
technology A while others are staying in the traditional sector and using technology Z. Hence,

Y (t) = exp (k0 + zts)

[
A

∫ t

ts

exp [(s− ts) z + (t− s) a]
1

η
ds+ Z

ts + η − t
η

exp [(t− ts) z]
]

= exp (k0 + zts)

[
1

η

1

a− zA
[
ea(t−ts) − ez(t−ts)

]
+
ts + η − t

η
Ze(t−ts)z

]
.

In the third stage t ∈ [ts + η, t0 + τ), all banks have already entered the speculative sector by using
technology A. Thus,

Y (t) = exp (k0 + zts)A

∫ ts+η

ts

exp [(s− ts) z + (t− s) a]
1

η
ds

= exp (k0 + zts)A
1

η

1

a− z e
a(t−ts)

[
1− e−(a−z)η

]
.

In the fourth stage [t0 + τ , t0 + ζ), some banks have already safely exited the speculative sector by
switching to technology Z while others are staying in the speculative sector and using technology
A. It follows that

Y (t) = exp (k0 + zts)

[
Z
t− (t0 + τ)

η
ea(m+τ)+z[t−(t0+τ)] +A

∫ ts+η

t−m−τ
exp [z (s− ts) + a (t− s)] 1

η
ds

]
= exp (k0 + zts)

[
Z
t− (t0 + τ)

η
ea(m+τ)+z[t−(t0+τ)] +

A 1
η

a− z

[
e(a−z)(m+τ)+z(t−ts) − e−(a−z)η+a(t−ts)

]]
.

The fifth stage [t0 + τ , t0 + ζ) is the post-crisis period, in which all banks are operating in the
traditional sector. The banks that are caught by the crisis at t = t0 + ζ lose a portion of their
capital at the crisis arrival time t = t0 + ζ. Hence,

Y (t) = K (t0 + ζ)Zez[t−(t0+ζ)],

whereK (t0 + ζ) = exp (k0 + zts)
[
ζ−τ
η ea(m+τ)+z(ζ−τ) + 1

η
`(ζ)
a−z

[
e(a−z)(m+τ)+z(m+ζ) − e−(a−z)η+a(m+ζ)

]]
.

We give the expression of Ys (t). In the first stage t ∈ [0, ts), all banks are operating in the
traditional sector, so the aggregate output is given by Ys (t) = 0. In the second stage t ∈ [ts, ts + η),
some banks have already entered the speculative sector by using technology A while others are
staying in the traditional sector and using technology Z. Hence,

Ys (t) = exp (k0 + zts)A

∫ t

ts

exp [(s− ts) z + (t− s) a]
1

η
ds = exp (k0 + zts)

1

η

1

a− zA
[
ea(t−ts) − ez(t−ts)

]
.

In the third stage t ∈ [ts + η, t0 + τ), all banks have already entered the speculative sector by using
technology A. Thus,

Ys (t) = exp (k0 + zts)A

∫ ts+η

ts

exp [(s− ts) z + (t− s) a]
1

η
ds = exp (k0 + zts)

A

a− z
1

η
ea(t−ts)

[
1− e−(a−z)η

]
.
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In the fourth stage [t0 + τ , t0 + ζ), some banks have already safely exited the speculative sector by
switching to technology Z while others are staying in the speculative sector and using technology
A. It follows that

Ys (t) = exp (k0 + zts)
[
A
∫ ts+η
t−m−τ exp [z (s− ts) + a (t− s)] 1

ηds
]

= exp (k0 + zts)
A
a−z

1
η

[
e(a−z)(m+τ)+z(t−ts) − e−(a−z)η+a(t−ts)

]
.

In the post-crisis period [t0 + ζ,+∞), all banks operate in the traditional sector. Hence, Ys (t) = 0.

Proof of Corollary 2: To simplify the algebra, we assume that the government distributes the
tax revenue at time t = t0 + ζ in a way that all banks receive a lump-sum capital subsidy Λ. The
government breaks even, so

Λ = χ`ω. (B.28)

The individual bank ti’s optimization problem in (9) is replaced by

τ∗i = arg max
τ i


Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])︸ ︷︷ ︸

probability of survival

[
τ ic

H + [Σ (1 + Λ)]
]︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τ i
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

[
xcH + Π (`)

]︸ ︷︷ ︸
payoff in the case of failure

dx

 ,

where the term Σ (1 + Λ) on the first line is the payoff in the case of survival, and the redefined
Π (`) ≡ Σ · [(1− χ) `+ Λ] is the payoff in the case of failure, and an individual bank takes Λ as a
given constant. The first-order condition implies

λ

1− exp [−λ (ζ − τ∗)] =
cH

Σ− Σ` (1− χ)
. (B.29)

We show that there exists a unique pair (χ,Λ) that makes the solution given by (B.29) and
(B.28) satisfy τ∗ = τSB. On the one hand, substituting τ = τSB and ζ = ζ

(
τSB

)
in (B.28), ω

is fixed and (B.28) gives Λ being an increasing function of χ. On the other hand, substituting
τ∗ = τSB and ζ = ζ

(
τSB

)
in (B.29), (B.29) gives Λ being a decreasing function of χ. So there

exists a unique pair (χ,Λ) that implements τ∗ = τSB. Also, under the suffi cient condition that Σ
is high enough, χ < 1.

The second best effi ciency (i.e., the value of the objective function of (13) evaluated at τ = τSB)
is implemented when τSB is implemented. For the outside sector, since τ = τSB, the payoff is the
same as in the second best case. For survival and failed banks, since τ = τSB, their profit flow
prior to the crisis is the same as in the second best case. After the crisis, since survival banks and
failed banks have the same productivity, the capital transfer under tax and subsidy does not affect
the aggregate output. Therefore, the second best effi ciency is implemented.

Proof of Corollary 3: The total amount of interest income that the government can use as
subsidy is % (1− `)ω. At time t0 + ζ, all banks receive subsidy Λ. Here Λ denotes the monetary
subsidy, while it represents a capital subsidy in the tax policy case. The government breaks even,
that is,

Λ = % (1− `)ω. (B.30)
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The individual bank ti’s optimization problem in (9) is replaced by

τ∗i = arg


Pr (t0 + ζ ∈ (ti + τ i, ti + ζ])︸ ︷︷ ︸

probability of survival

[
τ ic

H + [Σ + Λ]
]︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τ i
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

[
xcH + Π (`)

]︸ ︷︷ ︸
payoff in the case of failure

dx

 ,

where the term Σ + Λ on the first line is the payoff in the case of survival, and the redefined
Π (`) ≡ `+ (Σ− 1)− % (1− `) + Λ is the payoff in the case of failure, and an individual bank takes
Λ as a given constant. The first-order condition implies

λ

1− exp [−λ (ζ − τ∗)] =
cH

(1− `) (1 + %)
. (B.31)

We show that there exists a unique pair (%,Λ) that makes the solution given by (B.31) and (B.30)
satisfy τ∗ = τSB. On the one hand, substituting τ = τSB and ζ = ζ

(
τSB

)
in (B.30), ω is fixed and

(B.30) gives Λ being an increasing function of %. On the other hand, substituting τ∗ = τSB and
ζ = ζ

(
τSB

)
in (B.31), (B.31) gives Λ being a decreasing function of %. So there exists a unique

pair (%,Λ) that implements τ∗ = τSB. In addition, a failed bank will choose to refinance when
`+ (Σ− 1)− % (1− `) > ` (i.e., the profit under refinancing is higher than `), which is true under
the condition that Σ is high enough.

The second best effi ciency (i.e., the value of the objective function of (13) evaluated at τ = τSB)
is implemented when τSB is implemented. For the outside investors, since τ = τSB, the payoff is
the same as in the second-best case. For survival and failed banks, since τ = τSB, their profit flow
prior to the crisis is the same as in the second-best case. After the crisis, the aggregate output
does not change and only the wealth transfer between failed banks and survival banks happens.
Therefore, the second-best effi ciency is implemented.

Proof in Section 6: The proof of the microfounded model is a simple modification of that of
the baseline model. To save space, we prove the conclusions concisely, and we prove them under
the general setting with r ≥ 0. The social planner’s optimization problem can be written as

max
τ

Ψ (τ , ζ) ≡
∫ t0+ζ−τ

t0

[ (∫ ti+τ
t0

e−r(s−t0)cHds
)

+e−r(ti+τ−t0) · cLr

]
1

η
dti +

∫ t0+η

t0+ζ−τ

[ (∫ t0+ζ
t0

e−r(s−t0)cHds
)

+e−r(t0+ζ−t0) ·Π (`)

]
1

η
dti

+ e−rζ
(
G
(
ωC
)
− ωC`

)
+

[ ∫ t0+τ
t0

e−r(t−t0) [β − κ (t− t0)] dt

+
∫ t0+ζ
t0+τ e

−r(t−t0)
[
β
(

1− t−(t0+τ)
η

)
− κ (t− t0)

]
dt

]
︸ ︷︷ ︸

firm’s profit

.

(B.32)

Denote by zetd (τ) and z (τ) the social planner’s first order conditions in the extended model and
baseline model, respectively. Then we have the following results

zetd (τ) = z (τ) +

∫ t0+ζ

t0+τ
e−r(t−t0)β

1

η
dt︸ ︷︷ ︸

firm’s profit

and
dzetd (τ)

dτ
=
dz (τ)

dτ
+ β

1

η

[
e−rζ

dζ

dτ
− e−rτ

]
︸ ︷︷ ︸
firm’s profit (negative)

.
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Following the same procedure as in the baseline model, we can find a suffi cient condition to guar-
antee dzetd(τ)

dτ < 0, that is,

r <
κ

β

2− v + cH

v + v
(
cL

r − 1
)
 . (B.33)

To summarize, if v
(
cL

r − 1
)
is large enough and r < κ

β , the social planner’s optimization problem

has a unique optimum τSB.

Next, we show a suffi cient condition to guarantee τSB = 0. Given the suffi cient condition for a
unique equilibrium, we only need to ensure zetd (τ = 0) ≤ 0. A suffi cient condition for τSB = 0 is

cH er(ζ−τ)−1
r

1
η +

∫ t0+ζ
t0+τ e

−r(t−t0)β 1
ηdt+

[
cH − v

(
cL

r − 1
)]

dζ
dτ ω

C ≤ 0 at τ = 0, that is

v

(
cL

r
− 1

)
≥

[
exp

(
rη

1 + κ
βη

)
− 1

](
1

rη

)(
1 +

κ

β
η

)2
(

1
κ
βη

)
cH+︸ ︷︷ ︸ c

H

baseline model

+

(
β

η

)2 [
1− e

−r η
1+κ

β
η

]
1

κ

(
1 +

κ

β
η

)2

︸ ︷︷ ︸
firm’s profit (new part)

. (B.34)

In summary, if v
(
cL

r − 1
)
is large enough and r < κ

β , we have τ
SB = 0. Note that in the above

inequality only v is a function of γ. Thus, we can always find suffi cient conditions to ensure τSB = 0.
Then we have the conclusion similar to Proposition 2.

To prove a similar conclusion to Proposition 3, we modify the proof for the baseline model.
Using zetd (τ) and z (τ), we have

zetd (τ∗, ζ (τ∗)) =

z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗))
dω
dτ

h
+

∫ t0+ζ

t0+τ
e−r(t−t0)β

1

η
dt︸ ︷︷ ︸

firm’s profit


∣∣∣∣∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

,

where the firm’s profit is the new part introduced in the extended model. A suffi cient condition to
ensure zetd (τ∗, ζ (τ∗)) < 0 can be written as

cH
er(ζ−τ) − 1

rη
+

[
cH − v

(
cL

r
− 1

)]
dζ

dτ
ω +

β

η

[
1− e−r(ζ−τ)

]∣∣∣∣∣
(τ ,ζ)=(τ∗,ζ(τ∗))

≤ 0. (B.35)

As the LHS of (B.35) is decreasing in τ , a suffi cient condition for (B.35) to be true is

cH
er(ζ−τ) − 1

r

1

η
+

[
cH − v

(
cL

r
− 1

)]
dζ

dτ
ω +

β

η

[
1− e−r(ζ−τ)

]∣∣∣∣∣
(τ ,ζ)=(0,ζ)

≤ 0,

which gives the same condition as (B.34). The remaining proof is the same as that in the proof of
Proposition 3.
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