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Abstract

We develop a tractable model of systemic bank runs. The market-based banking system

features a two-layer structure: banks with heterogeneous fundamentals face potential runs by

their creditors while they trade marketable assets in the asset (interbank) market in response to

creditor withdrawals. The possibility of a run on a particular bank depends on its assets’interim

liquidation value, and this value depends endogenously in turn on the status of other banks in

the asset market. The within-bank coordination problem among creditors and the cross-bank

price externality feed into each other. A small shock can be amplified into a systemic crisis.
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At the heart of the financial crisis of 2007 to 2009 was a series of bank runs that caused failures

or impairments of many financial institutions (Bernanke (2010), Gorton (2010), Gertler, Kiyotaki,

and Prestipino (2020)).1 Empirical research has revealed two key facts about how the crisis evolved.

FACT 1 (Co-movement between bank runs and asset prices): Since summer 2007, runs on

financial institutions had been on a steady rise and, at the same time, “discount rates” in asset

(credit) markets – fire-sale discounts on asset-backed securities, repo rates for securitized bonds,

and interbank lending rates – exhibited an upward trend.2 Gorton and Metrick (2012) and Covitz,

Liang, and Suarez (2013) document that the probability of runs at the bank or program level was

strongly correlated with the LIBOR-OIS spread, a primary measure of interbank lending rates.

FACT 2 (Sharp crash): The initial gradual deterioration was followed by a sharp crash – a jump

discontinuity in asset prices together with systemic bank runs in September 2008, in the absence

of any apparent large exogenous shock to economic fundamentals (see also Gertler, Kiyotaki, and

Prestipino (2020)). In an immediate and aggressive response, the Federal Reserve implemented a

series of unconventional interventions to boost asset market liquidity (Bernanke (2009)).

Why do bank runs co-move with asset prices? And what gives rise to a sharp crash? Despite

a flourishing literature on banking and liquidity crises, few theoretical papers analyze the joint

phenomena and offer explanations for the nonlinear events. Indeed, theory on bank runs pioneered

by Bryant (1980) and Diamond and Dybvig (1983) typically does not feature a link to asset prices.

In recent decades, however, the banking system has experienced a transition toward a “market-

based” banking model, in which banks rely greatly on short-term runnable nonretail funding in

the capital markets as a source of financing and they heavily trade marketable assets (directly or

through repo contracts) in asset and credit markets in response to creditor withdrawals (see, e.g.,

Brunnermeier (2009) and Gorton (2010)). Financial institutions such as commercial and investment

banks, broker dealers, and shadow banks often fish liquidity from the same pool (Shin (2009)).

In this paper we develop a tractable framework that links bank runs with asset prices and

demonstrates the amplification mechanisms to explain a systemic crisis. Specifically, we model

bank runs in a market-based banking system, in which there are many banks and these banks, with

marketable assets and runnable debt, share a common asset market (e.g., asset liquidation market,

repo market, and interbank lending market). The model shows how a run on one bank affects, and

is affected by, runs on other banks via the asset market, and how a small shock can be amplified

into a systemic crisis featuring widespread runs concomitant with collapses in asset prices. The

1Besides well-documented runs on commercial banks and investment banks, the modern-day bank runs occurred
in the shadow banking system, such as the repo market (Copeland, Martin, and Walker (2014), Gorton and Metrick
(2010a, 2010b, 2012), Krishnamurthy, Nagel, and Orlov (2014)), money market mutual funds (Duygan-Bump et al.
(2013)), and the ABCP market (Covitz, Liang, and Suarez (2013), Kacperczyk and Schnabl (2010), Acharya and
Schnabl (2010)).

2All these rates are “discount rates”used in pricing assets.
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model explains the empirical facts and has novel policy implications.

We begin by presenting a baseline three-date model. There is a continuum of financial institu-

tions (“banks”). At the initial date, each bank finances its long-term risky asset with short-term

debt from many creditors. At the interim date, each bank realizes its asset’s fundamental value

(i.e., asset quality) – the expected payoff at the final date. A bank’s creditors receive noisy private

signals about the bank’s fundamental value and decide whether to roll over or to withdraw. If

too many creditors of a bank withdraw, the bank will be unable to satisfy these early withdrawals

and hence will fail at the interim date. All failing banks liquidate their assets in a common asset

market. The liquidation value of a bank therefore depends on its asset’s fundamental value, on

the aggregate volume of liquidation (fire sales) in the system, and on market liquidity (depth).

Under this setting, the equilibrium is characterized by the joint determination of three endogenous

variables: the rollover decision of creditors, the interim liquidation value of a bank in the case of

its being run, and the aggregate liquidation in the system. In particular, when a bank’s creditors

make rollover decisions, they need to form expectations about the liquidation value of the bank,

because the value determines the extent to which the bank can withstand early withdrawals (i.e.,

the degree of fragility to runs) and in turn the level of coordination risk among peer creditors.

The interplay between the within-bank coordination game and the cross-bank price externality

gives rise to two-way feedback between liquidation values and creditor runs. If creditors of a

bank believe the liquidation value of the bank’s asset to be low, they will optimally choose to run

more often because a lower liquidation value increases within-bank coordination risk. In turn, if

creditors run more often, more banks will fail in the system, increasing aggregate fire sales and thus

reducing every bank’s liquidation value due to the fire-sale externality. The feedback effect is also

strong enough to potentially generate multiple equilibria. In fact, because banks share a common

asset liquidation market, strategic complementarities arise among creditors of different banks, in

addition to strategic complementarities among creditors of the same bank. The increased degree

of complementarity among creditors in the system results in a higher likelihood of equilibrium

multiplicity. The amplification mechanism above – the feedback loop as well as the possibility of

multiplicity jumps – implies that a small shock to the aggregate state variables (i.e., the average

asset quality of banks in the system and the asset market depth) can turn into a systemic crisis

that exhibits a large number of bank runs accompanied by a sharp fall in asset prices.

We next present the full model. The full model allows banks to hold liquid assets in addition

to their holding of illiquid assets. The presence of liquid assets on the balance sheet of banks

not only directly affects the run incentives of bank creditors but also changes the behavior of the

asset market. Banks that realize stronger fundamentals and thus face fewer interim withdrawals in

equilibrium will supply liquidity to the asset market, while banks that realize weaker fundamentals

will demand liquidity. That is, interbank trading arises endogenously. The liquidation of illiquid
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assets of banks in the asset market features both fire sales to outside investors and interbank

trading; in other words, the two types of trading co-exist. In particular, creditor runs, fire-sale

prices, and interbank rates are jointly determined in equilibrium. The full model hence sheds light

on the empirical facts by additionally rationalizing the movement of interbank (repo) rates, as in

the data. Equally importantly, the full model with liquid asset holdings, including heterogeneous

holdings across banks, lays the groundwork for analysis of realistic policy interventions.

The full model also allows for aggregate uncertainty. In the baseline model with no aggregate

uncertainty, the average asset quality of banks in the system – the aggregate state – is known,

so creditors perfectly foresee the aggregate liquidation under rational expectations. In contrast, in

the full model, the aggregate state is stochastic. In this case, the liquidation value of a bank, as

a function of the aggregate liquidation or the aggregate state, is stochastic. Individual creditors

use their private signals about their bank (i.e., local information) to infer the fundamental value

of their bank as well as the aggregate or global state. In other words, individual creditors’private

signals reveal information about the status of not only their own bank but also other banks. Since

one signal plays dual roles to infer two-layer, correlated fundamentals, solving the global-games

model is challenging; nevertheless, we solve the model analytically.

The full model with aggregate uncertainty delivers additional new insights. An increase in

uncertainty about aggregate fundamentals (akin to “fear,”“panic,” etc.) – the second moment,

other than a change in fundamentals per se – the first moment, can play an important role in

amplification mechanisms responsible for a systemic crisis. First, aggregate uncertainty amplifies

the within-bank coordination problem, precipitating individual creditors to run. In fact, in the

system context, a bank essentially faces a run by its own creditors as well as “runs” by other

banks via the asset market. Uncertainty about cross-bank “runs” aggravates the within-bank

coordination problem for every bank, triggering actual cross-bank “runs”with an amplification loop.

Such an amplification mechanism would not exist in a single-bank model without an asset market

connecting many banks. Second, an increase in aggregate uncertainty is typically accompanied

by an increase in bank-level fundamental dispersion, as empirical literature documents. If cross-

bank fundamental dispersion increases more than does aggregate uncertainty, the equilibrium can

switch from uniqueness to multiplicity, and thus a self-fulling multiplicity jump is possible. In fact,

when cross-bank fundamental dispersion increases, private signals about one bank will become less

informative about other banks, so creditors will rely less on their private signals about their own

bank and more on the prior (public signal) to infer the aggregate state, in which case equilibrium

multiplicity becomes more likely.

Our model offers new and unique policy implications. Concerning ex post policies, our frame-

work, explicitly modelling bank runs jointly with asset markets, allows us to study and evaluate

two major unconventional intervention measures that the Federal Reserve implemented: providing
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liquidity support to asset markets and injecting liquidity into financial institutions. We analyze

the pros and cons of each measure, demonstrate the tradeoff, and show the optimal combination.

Our analysis highlights that liquidity support to the asset market is effectively a price-contingent

bailout. This measure is particularly effective in tackling expectations-driven systemic runs: when

a bad expectation of creditors precipitates their running, driving down asset prices, it is precisely

at that time that the government’s liquidity support, for a given aggregate amount, is able to buy

more assets, which thereby provides a cushion making asset prices not fall as much, so a bad ex-

pectation may not be formed in the first place since it would not be justified. Overall, our model

suggests that for a crisis of high severity it is optimal for the government to use its limited resources

to support the asset market only, for a crisis of low severity supporting banks is optimal, and for

a crisis of medium severity it is optimal to mix the two measures. As for ex ante policies, our

model studies the ex ante problem, endogenizes liquid asset holdings of banks at the initial date,

and addresses the question of whether individual banks’decision is socially optimal. This provides

novel perspectives on some pillar macroprudential tools underscored in Basel III.

Related literature. The literature on bank runs is vast. Our paper contributes to this literature

by modelling systemic bank runs – runs that occur simultaneously on many banks which inter-

act in a common asset market. Our focus is on studying the interplay between the within-bank

coordination among creditors and the cross-bank interaction in the asset market, which is crucial

to explain the empirical facts and shed light on policy measures. In contrast, existing papers typ-

ically model one element only. For example, Diamond and Dybvig (1983) and Gertler, Kiyotaki,

and Prestipino (2020) treat the entire banking system as a single or representative bank without

considering the interactions among banks and take asset prices largely as exogenous,3 while pa-

pers such as Uhlig (2010), Bernardo and Welch (2004), and Morris and Shin (2004) directly study

market-wide runs and abstract away the within-bank coordination problem by assuming that each

bank has one representative creditor or simply that each firm/bank is an individual with zero debt.4

Our paper contributes to our understanding of amplification mechanisms in banking and liq-

uidity crises. Brunnermeier (2009), Krishnamurthy (2010), and Brunnermeier and Oehmke (2013)

survey various amplification mechanisms, where one prominent mechanism highlighted is the feed-

back between asset prices and balance sheet constraints: lower asset prices tighten balance sheet

constraints, causing asset liquidations, further depressing asset prices. Our paper studies and for-

malizes the amplification mechanism between systemic bank runs and asset prices under stress.

We show that a feedback loop exists between asset prices and creditors’run on individual banks

3The liquidation value of bank assets in Diamond and Dybvig (1983) is exogenous. Interbank trading and prices
are absent in Gertler, Kiyotaki, and Prestipino (2020).

4Diamond and Rajan (2005) study banking crises and aggregate liquidity shortages, where there are no interbank
market or coordination issues among creditors within a bank. Allen and Gale (2000) study financial contagion through
interbank contracting claims and assume that banks face exogenous idiosyncratic liquidity shocks, where there is no
liquidity trading of banks in a common asset market or endogenous illiquidity risk for a bank.
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(i.e., within-bank coordination). Unlike existing models in which there are often explicit exogenous

price-dependent constraints (e.g., the collateral constraint in Kiyotaki and Moore (1997) and the

VaR constraint in Brunnermeier and Pedersen (2009)), in our model there are no explicit constraints

and instead asset prices endogenously affect the coordination risk and run incentives of bank credi-

tors. The key state variable that triggers the amplification loop in our model is asset fundamentals

(akin to the net worth in Bernanke and Gertler (1989) and Kiyotaki and Moore (1997)), or the

risk-absorbing capacity of asset market investors as in He and Krishnamurthy (2012).

Our paper is related to the literature that studies bank runs using global-games methods. The

models in this literature realistically assume that creditors receive private signals about a bank’s

fundamentals, and show that a bank run is both fundamental-based and panic-based.5 Early works

in this literature study runs on a single bank and take the interim liquidation value (function)

of the bank as exogenous (e.g., Rochet and Vives (2004), Goldstein and Pauzner (2005), and

the general model of Vives (2014a)). Liu (2016) and Eisenbach (2017) recently made progress in

endogenizing the interim liquidation values by studying many banks with interactions in a common

asset market.6 Our paper contributes to this literature in i) building a tractable framework to

endogenize liquidation values in the financial system context, featuring both fire sales to outside

investors and interbank trading, which is important for explaining empirical evidence and policy

analysis, and ii) modelling systemic bank runs in a general setting without and with aggregate

uncertainty. When aggregate uncertainty is present, our model studies the realistic setting in which

individual creditors use their private signals about their bank to infer both the fundamentals of

their bank and the aggregate state of the banking system (considering that local information is often

more available and precise than global information). Studying this kind of game and analytically

solving the equilibrium is new to the literature and constitutes a methodological contribution.

A new paper by Goldstein et al. (2020) presents a global-games model to study bank hetero-

geneity and financial stability by emphasizing reinforcement of two complementarities. Their model

also uses a setting in which runs on banks are connected because of fire sales in a common asset

market, which is closely related to Liu (2016, 2018a,b), Eisenbach (2017), and our work. Their pa-

per considers aggregate uncertainty and uses an information structure to have a unique equilibrium.

Specifically, their model assumes that individual creditors receive two distinct private signals: a

virtually perfect signal about the bank-specific component of their bank’s asset fundamentals and

a noisy signal about the aggregate component. Under this information structure, creditors of all

banks face one uncertainty, which is about the aggregate state, and there exists a unique equi-

librium (see also Sákovics and Steiner (2012)). In contrast, our model assumes that individual

5See, e.g., Gorton and Winton (2003), Allen and Gale (2009), and Goldstein (2013) for discussions of evidence.
6Eisenbach (2017) uses a reduced-form approach by assuming that outside investors provide an exogenous

downward-sloping aggregate demand curve for bank assets (while his paper has other focuses). Liu (2016) explicitly
models interbank trading.
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creditors receive only one private signal, which is about their bank’s overall asset fundamentals

(instead of each component), following the standard literature. Individual creditors thus face two

uncertainties and use one signal to infer two layers of fundamentals – their bank’s fundamentals

and the aggregate state, and both a unique equilibrium and multiple equilibria are possible.

Prior research such as Hellwig (2002) shows equilibrium multiplicity in coordination games

if the precision of the public signal increases suffi ciently faster than the precision of the private

signals. In our model, the global game is embedded into a Walrasian economy, in which case

multiple equilibria can emerge even when the precision of private signals approaches the limit

of infinity. Ozdenoren, Yuan, and Zhang (2018) and Asriyan, Fuchs, and Green (2019) show

that the intertemporal coordination in the infinite horizon can give rise to multiple self-fulfilling

stationary equilibria. In their models there is feedback between a higher (lower) asset price and

a pooling (separating) equilibrium. Multiplicity in our model does not depend on intertemporal

coordination or complementarity between participation and leverage (Gârleanu, Panageas, and Yu

(2015)). Goldstein, Ozdenoren, and Yuan (2013) and Sockin and Xiong (2015), among others,

show the informational feedback of financial market prices. Asset prices in our model instead affect

coordination (illiquidity) risk.

Our paper is also related to several studies on dynamic runs. He and Xiong (2012) study

dynamic debt runs in a model in which a firm has a time-varying fundamental and a staggered debt

structure. They consider one firm, not various firms (banks), and every creditor observes the same

public information. Their work formalizes the intertemporal coordination problem among creditors

of a firm.7 Our paper focuses instead on studying the interaction of many banks with endogenous

liquidation values. He and Li (2021) develop a dynamic model in which an entrepreneur borrows

from OLG households via layers of funds with rollover (run) problems between layers akin to He and

Xiong (2012). Our model features a different two-layer structure, namely, asset market – banks

– creditors. Martin, Skeie, and von Thadden (2014a, 2014b) study runs on short-term funding

markets. Their paper (2014a) shows how market fragility due to sudden collective expectation

changes can be addressed by individual banks and regulators. Their paper (2014b) focuses on how

different market microstructures influence expectation-driven runs. Our model studies systemic

bank runs and runs are both fundamental-based and expectation (panic)-based.

Our paper is additionally connected to the literature on pecuniary externalities and fire sales

(e.g., Gromb and Vayanos (2002), Caballero and Krishnamurthy (2003), Lorenzoni (2008), He

and Kondor (2016), Dávila and Korinek (2018), and the surveys of Krishnamurthy (2010) and

Brunnermeier, Eisenbach, and Sannikov (2013)). In these models, individual agents’actions can

7Angeletos, Hellwig, and Pavan (2007) study dynamic global games of regime change. Choi (2014) simplifies
the rollover decision within a bank and does not model the run in the regime-switching game. In studying trading
dynamics with search, Chiu and Koeppl (2016) show a government’s role in improving coordination, consistent with
our finding.
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cause constraints to tighten for other agents and hence trigger asset transfers in the economy that

are often ineffi cient. Our model shares some similarities with these models, but there are no explicit

price-dependent constraints in our model. In this sense, fire sales in our model are endogenous.

The paper is organized as follows. Section I presents the baseline model. Sections II and III

study the full model. Section IV analyzes policy implications. Section V concludes.

I. Baseline Model

In this section, we present the baseline model, to highlight the model framework.

A. Setting

Figure 1 illustrates the framework; the notation will be explained in due course. There are three

dates: t = 0, 1, and 2. We discuss banks, the asset market, and creditor runs, in order.

Figure 1. The model framework.

A.1. Banks

There is a continuum of banks with unit mass, indexed by i ∈ [0, 1]. At t = 0, each bank invests

in one unit of its own assets at a cost of 1. The cost is financed from two sources: an amount F

comes from a continuum of its creditors (depositors) with mass F , with each creditor contributing

1, and an amount 1− F comes from its equityholder (bankowner).8 At t = 1, a creditor of a bank

has the right to decide whether or not to roll over lending to the bank. If he decides not to roll over,

his claim is the par value 1 at t = 1; if, instead, he decides to roll over, the (promised) notional

8We assume that each bank has its own creditor base (for example, regional banks).
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claim to him is R at t = 2, where R > 1 is the gross interest rate.9 Bankowners and bank creditors

are risk-neutral.

The payoff of bank i’s assets at t = 2 is vi = θi + ei, which follows a normal distribution

as in Grossman and Stiglitz (1980). That is, the uncertainty of the payoff is resolved gradually.

Specifically, the term θi, interpreted as asset quality, has its realization at t = 1 with θi = µθ +σθδi

(denoting τ θ ≡ 1/σ2
θ), where µθ corresponds to the aggregate state of the economy at t = 1 and δi,

which is independently drawn from the identical distribution δi ∼ N(0, 1) across i′s, corresponds

to the bank-specific realization. In the baseline model of this section, we assume that µθ is a

constant and is common knowledge, that is, there is no aggregate uncertainty. The term ei is a

random variable with distribution ei ∼ N(0, σ2
e = τ−1

e ) and its uncertainty is resolved at t = 2. For

simplicity, we assume that ei ≡ e is perfectly correlated across banks.10 Figure 2 illustrates the

timeline of the asset payoff’s uncertainty resolution.

Figure 2. Timeline of the asset payoff’s uncertainty resolution.

Although the asset quality of a bank is realized at t = 1, its creditors are not informed. Never-

theless, at t = 1 creditors of a bank receive imperfect information (signals) about the asset quality

of the bank. Specifically, the signal for creditor h of bank i (about asset quality θi) at t = 1 is

shi = θi + σsε
h
i , where σs > 0 is a constant (denoting τ s ≡ 1/σ2

s), the creditor-specific noise ε
h
i

∼ N(0, 1), εhi is independent across h
′s for a given i, and each εhi for a given i is independent of θi.

A.2. Asset Market

If a bank suffers a creditor run (to be elaborated), its assets must be liquidated or put on fire

sales at t = 1 in a competitive asset market, which consists of a continuum of competitive investors

with a total mass of n. Investor j ∈ [0, n] has utility function U(W j) = − exp
(
−γW j

)
, where W j

is end-of-period wealth at t = 2 and γ is the risk-aversion (CARA) coeffi cient. Without loss of

generality, the gross risk-free interest rate between t = 1 and 2 is normalized to 1.

Investors have private information (signals) about banks’asset qualities. Specifically, the signal

for investor j about asset quality θi at t = 1 is xji = θi + σxε
j
i , where σx ≥ 0 is a constant, the

9Without loss of generality, we normalize the interim notional claim to 1. What matters for the model is the
interest rate between t = 1 and t = 2, that is, R.
10As long as ei is correlated across banks to some degree (i.e., not perfectly diversified away, for instance, under

the assumption that there exists a common risk factor across banks’assets), our model result of a downward-sloping
liquidation price (Lemma 1) and in turn other results will hold.
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investor-specific noise εji ∼ N(0, 1), εji is independent across i
′s and j′s, and each εji for a given i is

independent of θi.

Suppose that in equilibrium banks with a total mass of ϕ (∈ [0, 1]) suffer creditor runs in the

system. The total measure of bank assets in the system under liquidation is then ϕ.11 Denote by

li the liquidation price of bank i’s assets at t = 1.

A.3. Creditor Runs

Consider a typical bank i. If greater than li
F proportion of its creditors decline to roll over their

lending at t = 1, the bank’s liquidation value will not be suffi cient to cover these creditors’claims,

leading to its failure (we call this scenario a “creditor run”). Alternatively, one may think of li as

the collateral value of the bank’s assets. This means that the bank can raise cash of at most li at

t = 1 by pledging its assets as collateral. If the demand for cash exceeds li at t = 1, the bank will

fail.

A creditor’s payoff depends crucially on the actions of other creditors of the same bank. Let λ

denote the proportion of creditors of a bank who choose not to roll over (i.e., choose to call loans).

The payoff for a particular creditor is then given as in Figure 3.

Total calling proportion λ ∈ [0, liF )

(bank survives)

Total calling proportion λ ∈ [ liF , 1]

(bank fails )

Hold min
[
R, viF

]
li
F −∆

Call 1 li
F

Figure 3. Creditor-run payoff structure.

If λ ∈ [ liF , 1], a creditor run occurs and the bank fails at t = 1. In this case, all creditors

equally share the liquidation value li at t = 1, but those who have not called will incur fee ∆ (e.g.,

legal cost, agency cost, or reputation loss) to get their money back. This setup of a first-mover

advantage of withdrawing (calling) follows that in Eisenbach (2017). As Eisenbach argues, the first-

mover advantage, not depending on the sequential service constraint inherent in deposit contracts,

is more representative of market-based funding without a sequential service constraint as in Cole

and Kehoe (2000).12 Moreover, as will become clear later, under the limit σs → 0 all creditors of

a bank are in the same position in equilibrium, i.e., either all of them run on the bank or none of

11We will focus on the case σs → 0. In equilibrium, then, if a bank suffers a creditor run, it will liquidate its assets
entirely (i.e., no partial liquidation).
12This bank-run payoff structure is in the same spirit as that in Rochet and Vives (2004). In Appendix B, we show

the robustness of our model under the alternative payoff structure of Rochet and Vives (2004).
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them does so (λ = 1 or 0). Therefore, paying the extra fee ∆ under the scenario of “bank failing,

holding”is off the equilibrium path, which makes a general equilibrium analysis convenient.

If λ ∈ [0, liF ), we follow Morris and Shin (2009) to simplify the payoff structure. Concretely, if a

bank has less than li
F proportion of its creditors calling, partial liquidation will occur but the bank

can still survive to t = 2, in which case Morris and Shin (2009) assume that the bank’s balance

sheet reverts to its initial state. Essentially, after creditor withdrawals that do not result in bank

failure, the asset side of the bank’s balance sheet is restored to vi and the liability side reverts to

the total notional debt value FR claimed by F creditors. Put differently, as long as λ ∈ [0, liF ), the

bank continues as if it had not experienced any withdrawals. We use this simplified payoff structure

given in Figure 3 in the main text. We will show in Appendix B that our model results are robust

under the full payoff structure as in Diamond and Dybvig (1983).

A.4. Timeline

At t = 0, the liability side of a bank’s balance sheet is given by (F , 1 − F ) and the contract
term (1, R) with creditors is fixed. At t = 1, creditors, with information set

{
µθ, s

h
i

}
, move first by

making their rollover decisions, and banks move later by conducting asset sales in the asset market

based on the total withdrawals requested by their creditors, at which stage asset prices {li} are
formed. The rollover decisions of bank i’s creditors cannot be conditioned on the asset price li.

First, when creditors make their rollover decisions, the asset prices {li} will not have been formed
yet. Empirically, a bank’s creditors, who hold a debt contract, hardly know in advance details of

the bank’s business operation, such as knowing beforehand the yet-to-be-realized selling price of

bank assets. The asset price li is also bank-specific, unlike a publicly observable index (which is

more like a realized ϕ in our model). Second, nevertheless, creditors receiving a signal about θi is

equivalent to receiving a signal about li, since li is a function of θi (as we show in Section I.B.1).

In the limiting case of signal precision (i.e., σs → 0) that we focus on, therefore, creditors of bank i

are almost certain about li under rational expectations about ϕ, which will become clear in Section

I.B.1. At t = 2, payoffs are realized and contracts are delivered. Figure 4 illustrates the timeline.

Figure 4. Timeline.
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B. Equilibrium

We study the equilibrium at t = 1, the point at which creditors make their rollover decisions.

We are interested in the equilibrium in which every creditor uses a threshold (monotone) strategy

shi 7−→
{

Call shi < s∗

Hold shi ≥ s∗
,

where shi is the signal received by creditor h of bank i and s
∗ is the rollover threshold. Because

banks are identical ex ante, we naturally consider the symmetric equilibrium in which creditors of

all banks use a common strategy, that is, the threshold s∗ is not bank-specific. We will show that

an upper dominance region exists for the bank-run game in our model.

At t = 1, the portfolio choice of an investor j in the asset market is given by

max
{qji}

E
[
− exp

(
−γW j

)
|
{
xji

}
, {li}

]
s.t. W j =

∫
qji (vi − li)di, (1)

where qji is the quantity of investor j’s demand for asset i given his information set
{{

xji

}
, {li}

}
.

Definition 1 (Creditor run-asset market equilibrium) The creditor run-asset market equi-

librium at t = 1 is characterized by the triplet (s∗, {li} , ϕ), where s∗ is creditors’rollover threshold,

li is the liquidation price of bank i’s assets, and ϕ is the total measure of assets under liquidation

in the system, such that i) given the price rule li and creditors’rational expectations of ϕ, creditors

set their rollover threshold as s∗, ii) given the rollover threshold s∗, the total liquidation is ϕ, and

iii) given the total liquidation ϕ, the equilibrium liquidation price of bank i’s assets is li.

B.1. Solving the Equilibrium

We solve the equilibrium by analyzing its three elements.

Asset market in equilibrium. Financial market can aggregate dispersed information of investors

without necessarily resorting to noise traders (Vives (2014b)). We can follow the trading mechanism

in Vives (2014b) to obtain the result that the price li is a deterministic function of fundamentals

θi. Equivalently and for simplicity, we focus here on the fully-revealing equilibrium of the asset

market, i.e., the equilibrium in which financial prices fully reveal the fundamentals of the trading

assets in the spirit of Hayek (1945). In our context, it is the equilibrium in which θi is fully revealed

to investors through the financial price li. Alternatively, we can simply assume that the precision

of investors’private signals approaches the limit σx → 0 as in Morris and Shin (2004), just as the

precision of creditors’private signals approaches the limit σs → 0; this gives the same asset market

equilibrium as in the case in which investors have perfect information about {θi}.

Lemma 1 summarizes the asset market equilibrium.

11
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Lemma 1 Given the aggregate liquidation ϕ, the liquidation price of bank i’s assets is given by

li = θi − ϕ/k, (2)

where k ≡ n/
(
γσ2

e

)
measures market liquidity (i.e., market depth).

Lemma 1 is in the spirit of Grossman and Miller (1988). When the risk-averse market maker

sector is forced to absorb more risky assets, the price of every risky asset is affected and reduced

because of the limited risk-absorbing capacity of the market maker sector. A fire-sale externality

across banks arises as ϕ is common. The liquidation is socially ineffi cient because the long-term

illiquid assets are prematurely liquidated and transferred from higher-valuation sellers to lower-

valuation buyers. As in the large literature, “market liquidity”is measured as market depth, k.

Creditor run in equilibrium for an individual bank. Consider a typical bank i. Because li is

fundamental (θi)-dependent by Lemma 1, when θi is suffi ciently high, bank i will survive even if

every one of its creditors withdraws. That is, an upper dominance region exists. Therefore, we

only need to focus on threshold equilibria (Morris and Shin (2003) and Vives (2014a)).

Recalling Figure 3, denote by

D(θi;R) ≡ E
(

min
[
R,

vi
F

]
|θi
)

(3)

the expected payoff of the debt at t = 2 conditional on the realization of θi at t = 1, where

vi ∼ N(θi, σ
2
e). Clearly, we have the properties

∂D
∂θi

> 0 and lim
θi→+∞

D(θi;R) = R.

Given that all other creditors of bank i use the threshold s∗, the bank, when realizing asset

quality as θi, has a λ (θi; s
∗) = Pr(θi+σsε

h
i < s∗) = Φ

(
s∗−θi
σs

)
proportion of its creditors withdraw-

ing, where Φ (·) stands for the c.d.f. of the standard normal and φ (·) denotes its p.d.f.. Moreover,
the bank with realized asset quality θi will have its asset liquidation value to be li = θi − ϕ/k.
Hence, by the nature of creditor runs, the bank’s failure threshold, denoted by θ∗, is given by

θ∗ − ϕ/k
F

= Φ

(
s∗ − θ∗

σs

)
. (4)

That is, the bank fails if and only if θi < θ∗, which is rationally anticipated by individual creditors.

Given the bank’s failure threshold θ∗, what is the optimal strategy for an individual creditor

h? He rolls over if and only if his signal shi is above the threshold s
∗, and, by recalling Figure 3, s∗

solves the indifference equation

Eθi|shi
[

(D(θi)− 1) · 1θi ≥θ∗ + (−∆) · 1θi <θ∗
∣∣ shi = s∗

]
= 0, (5)

where Eθi|shi (·|shi ) is the conditional expectation operator over θi, with the conditional distribution

12
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being θi|shi ∼ N( τθ
τθ+τs

µθ + τs
τθ+τs

shi ,
1

τθ+τs
), and 1x =

{
1

0

if x is true

if x is false
is an indicator function.

In equation (5), based on Figure 3, in the case of bank survival (θi ≥ θ∗) holding is superior to

calling, with the net gain equal to D(θi) − 1, and in the case of bank failure (θi < θ∗) holding is

inferior to calling, with the net gain equal to −∆.

We consider the limiting case of signal precision, σs → 0. Under the limiting case, we prove

that the system of equations (4) and (5) is transformed into

θ∗ = s∗ (6)

and

(D(s∗)− 1) · li
F

+ (−∆) ·
(

1− li
F

)
= 0, (7)

where li = li (θi = s∗) = s∗ − ϕ/k by (2). The term li
F in (7) measures illiquidity/coordination

risk and the term D(s∗) measures insolvency risk. The intuition behind (7) is as follows. In

making rollover decisions, an individual creditor faces fundamental uncertainty as well as strategic

uncertainty (i.e., he is not sure how many peer creditors of the same bank will roll over). Under the

limit σs → 0, fundamental uncertainty disappears (i.e., shi → θi). Thus, for the marginal creditor

who receives signal shi = s∗, his inference of θi is θi = s∗ and his inference of li is li (θi = s∗) =

s∗−ϕ/k, given the price rule (2). However, strategic uncertainty does not disappear under σs → 0.

For the marginal creditor, he perceives that λ (i.e., the proportion of peer creditors choosing to

call) is uniformly distributed within [0, 1]. Hence, in his eyes, the probability that the proportion

of creditors calling loans is less than li
F is

li
F , that is, in his eyes, the probability of bank survival is

li
F and that of bank failure is 1− li

F , by recalling Figure 3.

Rewriting (7) yields
s∗ − ϕ/k

F

D(s∗)− 1 + ∆

∆
= 1. (8)

The limit σs → 0 also implies that in equilibrium all creditors of a bank are in the same position

ex post – either all of them decide to roll over or none of them does so. This, in turn, implies that

in equilibrium a bank either completely liquidates its assets or does not liquidate any fraction, i.e.,

no partial liquidation.13 Lemma 2 follows.

Lemma 2 Given the price rule li in (2) and creditors’rational expectations of ϕ, the creditor-run

equilibrium for an individual bank, characterized by (s∗, θ∗), is given by (6) and (7) under σs → 0.

For an exogenous ϕ, the equilibrium is unique and the comparative statics ∂s∗

∂ϕ > 0 follows.

It is worth noting that the creditor-run game in our model features a fundamental-dependent

13When θi < s∗, it follows that θi − ϕ/k < s∗ − ϕ/k < F by (8).
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liquidation value and a fundamental-dependent payoff structure (i.e., both li and D(θi;R) ≡
E
(
min

[
R, viF

]
|θi
)
depend on θi), and solving the equilibrium is nontrivial. In the literature, Rochet

and Vives (2004) use a fundamental-dependent liquidation value but a fundamental-independent

payoff structure, while Goldstein and Pauzner (2005) use a fundamental-dependent payoff structure

but a fundamental-independent liquidation value. Eisenbach (2017) assumes physical liquidation,

where an asset’s liquidation value does not depend on its fundamentals (see also Li and Ma (2022)).

Aggregate liquidation in the system. Because the creditors of all banks use the same rollover

threshold, the failure threshold is the same for all banks. Recall that the asset quality distribution

across banks at t = 1 is θi ∼ N(µθ, σ
2
θ). Banks with realized asset quality θi ≥ θ∗ will survive at

t = 1 while all others will fail. Hence, by θ∗ = s∗ under σs → 0, the total measure of failing banks

in the system is given by

ϕ = Φ

(
s∗ − µθ
σθ

)
, (9)

which also implies that the total measure of bank assets under fire sales is ϕ under σs → 0.

Lemma 3 summarizes the results of the three elements above.

Lemma 3 The creditor run-asset market equilibrium at t = 1, characterized by (s∗, {li} , ϕ) for a

given (µθ, k), solves the system of equations (2), (7), and (9) under the limit σs → 0. Two-way

feedback exists between liquidation prices (ϕ and thereby {li}) and the run threshold (s∗): ∂s∗

∂ϕ > 0

in (7) (or equivalently (8)) and ∂ϕ
∂s∗ > 0 in (9).

The two-way feedback in Lemma 3 is intuitive. Essentially, we have the following feedback loop:

When creditors run on banks with a higher threshold, more banks in the system will fail, resulting

in a lower liquidation price for every bank. Creditors of a bank have rational expectations on this

and thus have higher incentives to run in the first place due to higher coordination (illiquidity) risk.

B.2. Characterization of the Equilibrium

We examine the creditor run-asset market equilibrium in Lemma 3, where ϕ is endogenous.

Combining (8) and (9) yields one equation:

V ≡
{

1

F

[
s∗ − Φ

(
s∗ − µθ
σθ

)/
k

]}
D(s∗)− 1 + ∆

∆
= 1. (10)

The equilibrium at t = 1 is fully characterized by equation (10).14 Write the left-hand side (LHS)

14Based on (7), conceptually, an equilibrium s∗ must also satisfy the conditions 0 <
li(θi=s∗)

F
≤ 1 and D(s∗) ≥ 1.
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of (10) as function V (s∗;µθ, k). Figure 5 plots equation V (s∗;µθ, k) = 1 under a set of parameter

values σθ = 0.6, F = 0.6, R = 1.1, σe = 0.2, and ∆ = 0.1.

Figure 5. Equation V (s∗;µθ, k) = 1.

Formally, Proposition 1 follows.

Proposition 1 (Banking system with an asset market) Consider the limiting case of σs → 0.

When k is high enough or µθ is low enough, the creditor run-asset market equilibrium at t = 1 in

Lemma 3 is always unique; when k is not too high and µθ is not too low, multiple equilibria can

exist for some values of (µθ, k).

(Comparative statics) At a stable equilibrium, ∂s∗

∂µθ
< 0 and ∂s∗

∂k < 0 (run threshold) together

with ∂(ϕ/k)
∂µθ

< 0 and ∂(ϕ/k)
∂k < 0 (fire-sale price discount).15

Even under the limit σs → 0, multiple equilibria can exist at the system level. The intuition is

as follows. The presence of a common asset market gives rise to strategic complementarities among

creditors of different banks, in addition to the complementarities among creditors of the same bank.

That is, there is an increased degree of strategic complementarity among creditors in the system,

which makes equilibrium multiplicity more likely (see Appendix A for more details).

Based on Lemma 3 and Proposition 1, Figure 6 illustrates what happens if a shock hits µθ or

k.16 A small shock to µθ or k, triggering the feedback loop between s
∗ and ϕ, can lead to a large

15At a stable equilibrium, the slope of the best response function is lower than 1, that is, ∂s
∗h

∂s∗ < 1, where s∗h is the
threshold used by an individual creditor and s∗ is the threshold used by other creditors. At an unstable equilibrium,
∂s∗h

∂s∗ > 1. This implies that at a stable (unstable) equilibrium, ∂V (s∗;µθ,k)

∂s∗ > (<)0, shown in Appendix A.
16Liu (2019) endogenizes the market liquidity k.
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change in s∗ and ϕ along a selected stable equilibrium. The existence of multiple equilibria implies

an additional channel of amplification – multiplicity jumps. The right panel of Figure 6 illustrates

the effect, where the curve s∗ = s∗ (ϕ; k) is given by (8) and the curve ϕ = ϕ (s∗, µθ) is given by

(9).17 A negative shock to µθ results in the equilibrium moving from A to B (through the feedback

loop) or to B
′
(through the multiplicity jump). A negative shock to k has a similar effect.

Figure 6. Amplification and multiplicity.

Before closing this section, we show a difference between within-bank externality and cross-bank

externality in terms of the impact on run incentives. To formalize the idea, consider an individual

bank. Suppose that for some reason (e.g., under constraints) a proportion λ0 of bank i’s creditors

will choose to withdraw for sure. What then is the rollover threshold s∗ for the other creditors of

bank i? Similar to (8), s∗ is given by

V (s∗;λ0, ϕ) ≡ li − Fλ0

F − Fλ0
· D(s∗)− 1 + ∆

∆
= 1, (11)

where li = li (θi = s∗) = s∗ − ϕ/k by (2). Note that λ0 > 0 reduces both the numerator and the

denominator.

Lemma 4 The externality among creditors of the same bank is characterized by ∂V (s∗;λ0,ϕ)
∂λ0

=(−F ) / (F − Fλ0)︸ ︷︷ ︸
(−)

+ F (li − Fλ0) / (F − Fλ0)2︸ ︷︷ ︸
(+)

 D(s∗)−1+∆
∆ < 0, while the externality among cred-

itors of different banks is characterized by ∂V (s∗;λ0,ϕ)
∂ϕ =

(−1/k) / (F − Fλ0)︸ ︷︷ ︸
(−)

 D(s∗)−1+∆
∆ < 0.

17Brunnermeier and Reis (2019) provide a review of amplification and multiplicity.
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Lemma 4 illustrates that the externality among creditors of the same bank has two opposing

forces while the externality among creditors of different banks has a single negative force.

II. Full Model with Liquid Asset Holdings

The full model in this section considers the setting in which banks hold liquid assets as well as

illiquid assets. We show that interbank trading arises endogenously and the two types of trading –

fire sales to outside investors and interbank trading – co-exist in the asset market. Three variables

– creditor runs, fire-sale prices, and interbank rates (repo rates) – are jointly determined in

equilibrium. We also examine how the distribution of liquidity across banks affects systemic bank

runs.

In what follows, we study the equilibrium at t = 1 for given liquid asset holdings of banks. In

Appendix B, we study the equilibrium at t = 0 to endogenize liquid asset holdings.

A. Equilibrium at t = 1 under Liquid Asset Holdings

We slightly modify the setup of the baseline model by instead assuming that at t = 0, the asset

side of a bank’s balance sheet is given by (c, 1− c), where c is the amount of liquid asset holdings
(or simply “cash”) and 1−c is the units of risky assets. The liability side is still given by (F, 1−F ).
The rest of the setup remains the same as in the baseline model in Section I. Paralleling Section

I.B.1, the equilibrium at t = 1 has three elements.

Aggregate liquidation in the system. Similar to (9), given the rollover threshold s∗ of creditors

for all banks, the total measure of bank assets under liquidation is given by

ϕ = (1− c) Φ

(
s∗ − µθ
σθ

)
. (12)

Asset market in equilibrium. Recalling the timeline in Figure 4, given that creditors of all

banks use the rollover threshold s∗, we find the asset market equilibrium of the subgame. We will

show that in equilibrium the structure of the asset market is as follows. In the asset market, banks

are endogenously divided into three segments: θi ∈ (−∞, s∗∗], (s∗∗, s∗), and [s∗,+∞), where s∗∗ is

another threshold (to solve). Weak banks with asset quality θi ∈ (−∞, s∗∗] sell/repo their assets
to strong banks θi ∈ [s∗,+∞), while intermediate-quality banks θi ∈ (s∗∗, s∗) sell their assets to

outside investors. Note that bank buyers are risk-neutral but potentially financially constrained,18

while outside investors are risk-averse. Outside investors, as well as bank buyers, have perfect or

almost perfect information about seller banks’asset quality.19

18 In studying the equilibrium at t = 0, we will show banks optimally choose not to hold too much cash ex ante.
19As in the baseline model, we focus on the fully-revealing equilibrium or simply assume that bank buyers and

outside investors receive private signals with diminishing noise about a seller bank’s asset quality (i.e., σx → 0) as
in Morris and Shin (2004), similar to the precision of bank depositors’ information σs → 0. Empirical evidence in
Afonso et al. (2011) shows that industry buyers of bank assets can have fairly precise information about asset quality.
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Denote by η the aggregate fraction of liquidated assets that are absorbed by outside investors in

equilibrium, by li the price of bank i’s assets in selling to outside investors, and by I the expected

return of interbank trading (equivalently, 1/I is the discount rate between t = 1 and t = 2).

(Step 1: Prices determine allocation). Lemma 1 implies asset prices offered by outside investors

li ≡ l (θi) = θi − (ηϕ) /k. (13)

For bank buyers, who are price takers in the competitive asset market, they offer the price θi
I for

bank i’s assets. Therefore, on the seller side, a bank with asset quality θi chooses to sell to peer

banks through interbank trading rather than to outside investors through fire sales if and only if
θi
I ≥ l (θi). That is, there exists another threshold θi = s∗∗ below which selling to peer banks is

optimal and above which selling to outside investors is optimal, where s∗∗ solves θi
I = l (θi), or

I =
s∗∗

s∗∗ − (ηϕ) /k
. (14)

In other words, seller banks are endogenously sorted in the asset market: banks with asset quality

θi ∈ (−∞, s∗∗] choose to sell to peer banks while banks with asset quality θi ∈ (s∗∗, s∗) prefer

selling to outside investors.20 Intuitively, risk-neutral financially-constrained bank buyers seek the

highest return (IRR) while CARA-utility deep-pocketed outside investors purchase the assets until

the risk-adjusted NPV hits zero.

(Step 2: Allocation determines market clearing). Given that the outside investor sector absorbs

bank assets of quality θi ∈ (s∗∗, s∗), it follows that η =
(

Φ
(
s∗−µθ
σθ

)
− Φ

(
s∗∗−µθ
σθ

))/
Φ
(
s∗−µθ
σθ

)
.

Given that assets from banks with θi ∈ (−∞, s∗∗] are absorbed by peer banks θi ∈ [s∗,+∞), market

clearing (akin to cash-in-the-market pricing) dictates
∫ s∗∗
θi=−∞

(1−c)θi
I · dΦ

(
θi−µθ
σθ

)
=
∫ +∞
θi=s∗

c · dΦ
(
θi−µθ
σθ

)
∫ s∗∗
θi=−∞

(1−c)θi
I · dΦ

(
θi−µθ
σθ

)
≤
∫ +∞
θi=s∗

c · dΦ
(
θi−µθ
σθ

) if s∗∗ < s∗

if s∗∗ = s∗
. (15)

In (15), if s∗∗ is an interior solution (i.e., s∗∗ < s∗), the market-clearing condition is binding; if s∗∗

is the corner solution (i.e., s∗∗ = s∗), the total supply of liquidity can be excess.

Now we can explain and summarize two prices (returns) that individual banks face when they

trade in the competitive asset market. First, in the case that a bank is short of liquidity, it needs

to sell its risky assets in the asset market and the liquidation price is given by

l̂i ≡ l̂ (θi) =

{
θi
I

l (θi) = θi − (ηϕ) /k

when θi ∈ (−∞, s∗∗]
when θi ∈ (s∗∗, s∗) .

(16)

20A bank’s owner maximizes the total value of the bank (its debt value plus equity value) when liquidating assets.
Also, when σθ is suffi ciently small relative to µθ, the probability of θi being negative is negligible.
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Second, in the case that a bank has excess liquidity (i.e., θi ∈ [s∗,+∞)), it buys assets from other

banks with expected return I and corresponding risky return

Ĩ = I +
I

E (θi| θi ≤ s∗∗)
e. (17)

Considering that paying price θi
I entitles a risky payoff θi + e while the average θi in the interbank

market is E (θi| θi < s∗∗), therefore, on average paying price E( θi|θi<s∗∗)
I entitles a risky payoff

E (θi| θi ≤ s∗∗) + e, which explains Ĩ. In our model, trading between banks in the asset market

– essentially exchanging cash flows across time – can be interpreted as asset buying/selling or

secured lending/borrowing, and hence the return I can also be interpreted as an interbank lending

rate or a repo rate. Lemma 5 summarizes the asset market equilibrium with interbank trading.

Lemma 5 The asset market in equilibrium, characterized by (s∗∗, {li} , I) for a given (s∗, c), solves

the system of equations (12) to (15). The equilibrium is unique, determining the asset liquidation

prices given in (16) and the interbank return given in (17). The equilibrium has two cases.

i) When c is high enough such that
∫ +∞
θi=s∗

c · dΦ
(
θi−µθ
σθ

)
≥ (1− c)

∫ s∗
θi=−∞ θi · dΦ

(
θi−µθ
σθ

)
, the

equilibrium is a corner solution in which peer banks absorb all of the liquidated assets and there is

no fire sale to outside investors (that is, s∗∗ = s∗, l (θi) = θi, and I = 1).

ii) When c > 0 is lower than the threshold in i), the equilibrium is an interior solution in which

fire sales to outside investors and interbank trading co-exist.

Creditor run in equilibrium for an individual bank. Anticipating the subgame with the price

rules given in (16) and (17), creditors make their rollover decisions in the first stage of the game at

t = 1 by choosing threshold s∗. Paralleling (8), the creditor-run equilibrium is given by

c+ (1− c) · l (θi = s∗)

F
· D̂(s∗)− 1 + ∆

∆
= 1, (18)

where function l (θi) is given in (16) and the debt value is redefined as D̂(θi) ≡ E
(

min
[
R, (1−c)vi+cĨ

F

]
|θi
)
,

with vi ∼ N(θi, σ
2
e) and Ĩ given in (17), as a survival bank has a payoff from interbank lending, cĨ.

Proposition 2 (Banking system with an asset market under liquid asset holdings) With

liquidity holdings, the creditor run-asset market equilibrium at t = 1, characterized by (s∗, (s∗∗, {li} , I) , ϕ)

for a given (µθ, k, c), solves the system of equations (12) to (15) and (18) under the limit σs → 0.

We have the following comparative statics under certain mild regularity conditions: for a low

c, at a stable equilibrium, ∂s
∗

∂k < 0 and ∂s∗

∂c < 0; ∂((ηϕ)/k)
∂k < 0 and ∂((ηϕ)/k)

∂c < 0; ∂I∂k < 0 and ∂I
∂c < 0.
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B. Equilibrium at t = 1 under Heterogeneous Liquid Asset Holdings

In the previous subsection, we assume homogeneous liquid asset holdings and show that the

aggregate level of liquid asset holdings, c, is a state variable in determining systemic bank runs. In

this subsection, we study the equilibrium under heterogeneous liquid asset holdings and examine

whether the distribution of liquidity holdings across banks matters for financial stability. The main

purpose of this study is to lay the groundwork for deriving policy implications in Section IV.

We extend the baseline model by considering liquidity holdings of banks under heterogeneity.

Specifically, assume that before creditors make their rollover decisions at t = 1, the asset side of

bank i’s balance sheet is given by (ci, 1) for some reason, where ci is the amount of liquid asset

(cash) holdings and 1 is the units of risky asset holdings. The short-term debt of a bank is still

made up of depositors of mass F . Cash holdings ci are distributed across banks according to a

symmetric distribution with the fixed mean c in the support [0, 2c]. Denote the c.d.f. by G (·),
which implies that ∫

cidG(ci) = c, (19)

and in turn that the aggregate amount of cash holdings in the system is the fixed c. The baseline

model is a special case with degenerate distribution c = 0. Also assume that the realization of

θi for bank i is independent of its cash holdings ci. That is, banks are heterogeneous along two

dimensions (ci, θi), where ci is known to creditors and θi is not.

The setup above maps to the scenario in which the government decides to intervene and support

banks at t = 1 by injecting liquidity into them (see Section IV). It is worth noting that we could

alternatively choose the setting of banks’asset side being (ci, 1− ci) instead of (ci, 1). However, this

alternative setting is less relevant. First, it adds another dimension of heterogeneity, namely, banks

are heterogeneous not only in their cash holdings but also in their risky asset holdings. Second,

more importantly, studying the setting (ci, 1− ci) is less relevant to policy analysis in Section IV.

Creditors of a bank make rollover decisions contingent on the bank’s cash holdings. That

is, the rollover strategy of bank i’creditors becomes
{
shi , ci

}
7−→

{
Call shi < s∗ (ci)

Hold shi ≥ s∗ (ci)
, where{

shi , ci
}
is the information set and s∗ (ci) is the rollover threshold. The equilibrium of the system

at t = 1 is characterized by (s∗ (ci) , (s
∗∗, {li} , I) , ϕ) for a given (µθ, k,G (·)), where (s∗∗, {li} , I) is

the equilibrium outcome of the asset market as defined in the previous subsection.

Equilibrium. The equilibrium is similar to that in the previous subsection. First, ϕ becomes

ϕ =

∫
Φ

(
s∗ (ci)− µθ

σθ

)
dG(ci). (20)

Second, as all banks are treated equally in the asset market, s∗∗ is common (independent of ci) and
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Eq. (13)-(14) don’t change, with η replaced by η =

(∫
s∗(ci)>s∗∗

[
Φ
(
s∗(ci)−µθ

σθ

)
− Φ

(
s∗∗−µθ
σθ

)]
dG(ci)

)
/ϕ.

Note that if ci-banks are with a particularly high ci such that s∗ (ci) < s∗∗, those banks do not sell

assets to outside investors and only sell to peer banks in the case of liquidation. The market-clearing

condition (15) is replaced by∫
s∗(ci)≤s∗∗

Γ(s∗ (ci))
1

I
dG(ci) +

∫
s∗(ci)>s∗∗

Γ(s∗∗)
1

I
dG(ci) =

∫
ci

[
1− Φ

(
s∗ (ci)− µθ

σθ

)]
dG(ci),

(21)

where Γ(x) :=
∫ x
θi=−∞ θidΦ

(
θi−µθ
σθ

)
, the aggregate fundamental value of assets with quality up to

x that are put on sale. The market-clearing condition is binding when c is not large as shown in

Lemma 5. Third, the equation of creditor-run equilibrium (18) is replaced by

ci + l (θi = s∗ (ci))

F
· D(s∗ (ci))− 1 + ∆

∆
= 1 , (22)

where function l (θi) is given in (16) and debt function D(θi) is defined in (3). To prepare for

studying policy implications, here we assume that bank depositors do not claim part of the payoff

at t = 2 from their bank’s interbank lending, if any (the payoff goes to the government; see Section

IV). In other words, cash holdings affect the illiquidity risk but do not change the insolvency risk.

The system of equations (13), (14), and (19) to (22) solves the equilibrium. We are interested

in the comparative statics regarding how the distribution G(·) for a given fixed mean c affects the
aggregate ineffi cient fire sales ηϕ. To find out, we proceed as follows. The aggregate supply of

liquidity from peer banks to the asset market, denoted by SL, is given by

SL =

∫
ci

[
1− Φ

(
s∗ (ci)− µθ

σθ

)]
dG(ci), (23)

while the aggregate fundamental value of bank assets put on sale (across all distressed banks),

denoted by DL, is given by

DL =

∫
Γ(s∗ (ci))dG(ci).

We then define the aggregate liquidity shortage of the banking sector or equivalently the net amount

of excess liquidity (which is negative) as

Π ≡ SL−DL=

∫
Λ (ci) dG(ci), (24)

where

Λ (ci) ≡ ci
[
1− Φ

(
s∗ (ci)− µθ

σθ

)]
− Γ(s∗ (ci)).

Proposition 3 With heterogeneous liquid asset holdings, the creditor run-asset market equilibrium

at t = 1 solves the system of equations (13), (14), and (19) to (22).
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(Comparative statics) Given a low c, when µθ or k is low, under a small enough σθ and certain

mild regularity conditions, ηϕ (ineffi cient fire sales) is lower under the distribution G
′′
than under

the distribution G
′
, where G

′
second-order stochastically dominates G

′′
.

When the severity of a crisis is high (i.e., a low realization of µθ or k), an increase in dispersion

of cash holdings can reduce ineffi cient fire sales in the system. Intuitively, for a crisis of high severity

in which a large proportion of banks suffer runs, distributing the limited amount of aggregate cash

holdings evenly across banks would not help as all banks would still have a low probability of

survival. However, if the limited resources are concentrated to a smaller portion of banks, these

banks would have a significantly increased chance of surviving. In fact, the survival probability of

a c-bank is increasing and nonlinear in c (for low c and small enough σθ). In particular, once they

survive, they would lend in the interbank market to help other banks. That is, the cash holdings

for these receiving banks can be “reused”: making them survive more likely and (re)entering the

interbank market.

To elaborate, in the presence of the endogenous interbank market, the distribution of ci affects

the aggregate supply of liquidity in the interbank market from peer banks and hence the volume of

ineffi cient fire sales to outside investors. More specifically, Λ (ci) is nonlinear and convex in ci (in

the range of a low ci). The economic intuition is as follows. How much liquidity can a bank supply

to the interbank market? It depends on two factors: whether the bank can survive (i.e., not suffer

a run) and how much liquidity the bank possesses conditional on its survival. Both factors are a

function of ci. In fact, in Λ (ci), the term 1−Φ
(
s∗(ci)−µθ

σθ

)
corresponds to the probability of survival

and the term ci corresponds to the amount of liquidity to supply conditional on survival. The

product of these two terms, ci
[
1− Φ

(
s∗(ci)−µθ

σθ

)]
, is convex in ci, so a more dispersed distribution

G(ci) increases the aggregate supply of liquidity (by Jensen’s inequality). Note that the force of

the term Γ(s∗ (ci)) is dominated under a low µθ or k (a severe crisis) and a small enough σθ.

Figure 7. Aggregate ineffi cient fire sales (ηϕ) and aggregate liquidity shortage (Π) as

a function of cash holding dispersion ∆c.
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Figure 7 gives an illustration based on a simulation exercise. We consider the simple binomial

distribution of G (·), namely, ci ∈ {c+ ∆c, c−∆c} with a 50% probability for each realization,

where an increase in ∆c ∈ [0, c] corresponds to a mean-preserving spread. Figure 7 plots ηϕ and Π

in equilibrium as a function of ∆c, under a set of parameter values c = 0.01, µθ = 0.5, σθ = 0.2,

F = 0.6, k = 0.9, R = 1.1, σe = 0.2, and ∆ = 0.1.

III. Full Model with Aggregate Uncertainty

In this section, we study the full model by considering aggregate uncertainty, that is, aggregate

state µθ is no longer a constant but rather a stochastic variable. The central question we address in

this section is whether aggregate uncertainty plays an important role in amplification mechanisms

responsible for a systemic crisis, as many commentators emphasize uncertainty as a key factor in

crisis episodes (e.g., Bernanke (2009), Gorton and Metrick (2010a), and Bloom et al. (2018)).

To derive economic insights, the full model needs to be solved analytically, which is challenging

since one signal is used to infer two-layer, correlated fundamentals while the signal precision must

also be taken to the limit for model tractability. The Laplacian property for the standard global-

games setting that makes solving the equilibrium convenient cannot be directly applied to our

setting. We find a new approach to solving the equilibrium.

A. Setting

Consider the setting as in Section I, but assume that the aggregate state µθ has the prior

distribution µθ ∼ N(µ̄θ, σ
2
µθ

= τ−1
µθ

), where µ̄θ is a constant and common knowledge. As in the

global-games literature, µ̄θ can be interpreted as a public signal for the aggregate state µθ (see,

e.g., Morris and Shin (2003)). The special case of σµθ = 0 corresponds to no aggregate uncertainty

– the baseline model in Section I. Individual creditors’private information is still their private

signal shi , that is, an individual creditor’s information set at t = 1 is now
{
µ̄θ, s

h
i

}
. Realistically,

local information is more available and precise than global information.

B. Equilibrium

Denote by s∗h the threshold used by an individual creditor and by s∗ the threshold used by

other creditors of the same bank as well as by creditors of other banks. An individual creditor h

knows the following two results (rules). First, given that all other creditors of the same bank as his

use threshold s∗, the failure threshold of his bank, denoted by θ∗, is given by

θ∗ − ϕ/k
F

= Φ

(
s∗ − θ∗

σs

)
. (25)

This defines θ∗ as a function of s∗, written as θ∗ = θ∗ (s∗;ϕ). Second, because the creditors of

all other banks use the same threshold s∗, the total measure of bank assets under fire sale in the
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system must be a function of s∗ and µθ, written as

ϕ = ϕ (s∗, µθ) , (26)

which satisfies lim
σs→0

ϕ (s∗, µθ) = Φ
(
s∗−µθ
σθ

)
. Combining (25) and (26) yields one function θ∗ =

θ∗ (s∗;ϕ (s∗, µθ)), where the first argument s
∗ is the threshold used by other creditors of the same

bank and the second argument s∗ is the threshold used by creditors of other banks.

Individual creditor h does not know µθ and hence he does not know θ∗, but he does know the

rule θ∗ = θ∗ (s∗;ϕ (s∗, µθ)). Moreover, he does not know his bank’s asset quality θi. However, his

signal shi reveals information about both θi and µθ. That is, one signal plays dual roles in Bayesian

updating. His threshold s∗h is therefore given by the indifference condition

Eµθ,θi|shi
(

(D(θi)− 1) · 1θi ≥θ∗
∣∣ shi = s∗h

)
= Eµθ,θi|shi

(
∆ · 1θi <θ∗ | s

h
i = s∗h

)
, (27)

where Eµθ,θi|shi (·|shi ) is the conditional expectation operator and 1x is an indicator function defined

in (5). The conditional distribution is now a joint distribution of two dependent variables (µθ, θi).

By symmetric equilibrium, we have

s∗h = s∗. (28)

Lemma 6 With aggregate uncertainty, the creditor run-asset market equilibrium at t = 1, char-

acterized by (s∗, {li (µθ)} , ϕ (µθ)) for a given (µ̄θ, k), solves the system of equations (25) to (28).

Under the limit σs → 0, s∗ solves the equation
∫ +∞

−∞
Φ


Φ−1 (k (s∗ − FΦ (−z)))− 1

1+(σµθ/σθ)
2

(
s∗−µ̄θ
σθ

)
√

(σµθ/σθ)
2

1+(σµθ/σθ)
2

φ (z) dz

 D(s∗)− 1 + ∆

∆
= 1; (29)

for the extreme case σµθ → 0 and a given σθ, equation (29) becomes{
1

F

[
s∗ − Φ

(
s∗ − µ̄θ
σθ

)/
k

]}
D(s∗)− 1 + ∆

∆
= 1;

for the other extreme case σµθ → +∞ (i.e., improper prior of µθ) and a given σθ, equation (29)

becomes [
k

(
s∗ − 1

2
F

)]
D(s∗)− 1 + ∆

∆
= 1.

We can see that when σµθ → 0, equation (29) becomes the same as (10) (only with µθ replaced

by µ̄θ), so it is possible for s
∗ to have multiple solutions as shown in Figure 5 and Proposition 1.

In contrast, when σµθ → +∞, equation (29) clearly admits a unique solution.
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Proposition 4 (Banking system with an asset market under aggregate uncertainty)

Consider the limiting case of σs → 0. When σµθ is high enough (for a given σθ), the creditor

run-asset market equilibrium at t = 1 in Lemma 6 is always unique, no matter the values of

parameters (µ̄θ, k). When σµθ is low enough, multiple equilibria can exist for some values of (µ̄θ, k),

as characterized in Proposition 1 (with µθ replaced by µ̄θ).

With aggregate uncertainty there could be a unique equilibrium or multiple equilibria, depend-

ing on σµθ (for a given σθ and σs → 0). The result of the amplification mechanism between

creditor runs and asset prices always holds. In fact, with aggregate uncertainty, a feedback loop

exists between s∗ and the probability distribution of ϕ. A shock to µ̄θ or k triggers the loop.
21

With aggregate uncertainty, an individual creditor’s private signal shi contains information about

the aggregate state or the status of other banks (besides the status of his own bank). When

aggregate uncertainty increases, the information content of the private signal about the aggregate

state rises. That is, the larger is σµθ , the more weight creditor h assigns to his private signal s
h
i ,

as opposed to the weight assigned to the prior µ̄θ, to infer the aggregate state µθ. Hence, upon

receiving a given high signal shi , under a larger σµθ , creditor h tends to believe more firmly that

the amount of fire sales in the system is small (hence a high li), which decreases his incentive to

run. In short, under a larger σµθ , an individual creditor h’s threshold s
∗h becomes less sensitive to

the threshold s∗ of other creditors, implying that equilibrium multiplicity is less likely.

C. Implications: Uncertainty Shocks and Amplification

Having solved the equilibrium with aggregate uncertainty, we now show amplification mecha-

nisms that operate through uncertainty about the aggregate fundamentals (the second moment),

other than through the fundamentals per se (the first moment).

C.1. Aggregate Uncertainty Amplifying Within-Bank Coordination

We show two channels of amplification. First, we show the posterior-mean channel. Recalling

(25), in the system context, an individual bank i is essentially run by other banks via the asset

market as well as by its own creditors, that is,

θ∗ = Φ

(
s∗ − µθ
σθ

)
/k︸ ︷︷ ︸

“run”by other banks via asset market

+ FΦ

(
s∗i − θ∗

σs

)
︸ ︷︷ ︸
run by own creditors

, (30)

where s∗i and s
∗ denote the thresholds used by creditors of bank i and creditors of all other banks,

respectively. In other words, in the system context, the interim illiquidity risk of an individual bank
21Based on (25) to (28), the equilibrium is essentially characterized by the fixed-point problem between

s∗ and the distribution of ϕ, given by the two equations Eµθ,θi|shi
(

(D(θi)− 1) · 1θi ≥θ∗(s∗;ϕ)

∣∣ shi = s∗
)

=

Eµθ,θi|shi
(

∆ · 1θi <θ∗(s∗;ϕ)

∣∣ shi = s∗
)
and ϕ = ϕ (s∗, µθ).
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comes from two parts: external market risk and internal coordination risk. Because µθ is stochas-

tic, the first part is stochastic and individual creditors need to form their own expectations about

it. Under certain conditions, an increase in uncertainty about µθ can cause the marginal credi-

tors to adjust their expectation about µθ downward and hence their expectation about Φ
(
s∗−µθ
σθ

)
upward in Bayesian updating, which precipitates their running at a higher threshold. That is,

uncertainty about cross-bank “runs”exacerbates the within-bank coordination problem for every

individual bank, triggering actual cross-bank “runs”with an amplification loop. Formally, we have

the following comparative static result.

Corollary 1 Consider the case in which the equilibrium is unique in Lemma 6. Under the suffi cient

condition that µ̄θ is high enough and σµθ is low enough, the comparative statics
∂s∗

∂σµθ
> 0 for (29)

follows. Hence, an increase in aggregate uncertainty σµθ leads to a larger proportion of banks

suffering runs, Φ
(
s∗−µθ
σθ

)
, for any realized, unchanged aggregate fundamentals µθ.

Corollary 1 implies that a small increase in aggregate uncertainty σµθ can result in a significant

increase in s∗ and thus a significant increase in Φ
(
s∗−µθ
σθ

)
for any realized, unchanged aggregate

fundamentals µθ. Figure 8 illustrates the effect, where the (best response) function s
∗
i = r

(
s∗;σµθ

)
is given by equation V (s∗, s∗i , σµθ) = 1 in (A.10) in Appendix A.22 A shock to σµθ triggers the

feedback loop between s∗i and s
∗.

Figure 8. Effect of an increase in aggregate uncertainty σµθ .

Corollary 1 holds under the parameter conditions such that in equilibrium the proportion of

banks failing in the system is less than 50% on average. Intuitively, without aggregate uncertainty

22 In Appendix A, we show that the symmetric equilibrium in Lemma 6 can be alternatively characterized by the
fixed-point problem between s∗i and s∗ with two equations: V (s∗, s∗i , σµθ ) = 1 in (A.10) and s∗i = s∗. An increase in

σµθ shifts up the curve s
∗
i = r (s∗;σµθ ), but also lowers the slope ∂s∗i

∂s∗ at some relevant points (candidate equilibria)
so equilibrium multiplicity is less likely.
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(i.e., σµθ → 0), the inference of µθ is simply equal to the prior µ̄θ. With aggregate uncertainty, the

Bayesian inference of µθ for the marginal creditors who receive signal s
h
i = s∗ is a weighted average

of the prior µ̄θ and their signal s
h
i = s∗. As long as s∗ < µ̄θ (which implies Φ

(
s∗−µ̄θ
σθ

)
< 0.5 or

the proportion of banks failing is less than 50% on average), those marginal creditors adjust their

expectation about µθ downward (i.e., E
(
µθ| shi = s∗

)
< µ̄θ), so those creditors would choose to run

at a higher threshold. In other words, the equilibrium rollover threshold s∗ is increasing in σµθ .

Next, we show the posterior-variance channel. Here we make an additional assumption: n is

decreasing in ϕ, which essentially means that the supply of liquidity is negatively correlated with the

demand for liquidity (in the same spirit as Liu (2019)). This assumption implies that k ≡ n/
(
γσ2

e

)
is decreasing in ϕ, by recalling Lemma 1. For illustration and simplicity, assume that n = ϕ−β

with β > 0, which implies k = ϕ−βk0, where k0 ≡ 1/
(
γσ2

e

)
. Recalling (25), (30) is revised to

θ∗ =

[
Φ

(
s∗ − µθ
σθ

)]1+β

/k0︸ ︷︷ ︸
“run”by other banks via asset market

+ FΦ

(
s∗i − θ∗

σs

)
︸ ︷︷ ︸
run by own creditors

. (31)

Because β > 0, the first term in (31) is convex in µθ for a larger range of µθ when β is higher, while

the convexity implies that the conditional expectation E
([

Φ
(
s∗−µθ
σθ

)]1+β
∣∣∣∣ I) increases when the

information I =
{
µ̄θ, s

h
i

}
become noisier in the sense of a mean-preserving spread for the posterior

distribution µθ|I ∼ N
(

τµθ
τµθ+τθ

µ̄θ + τθ
τµθ+τθ

shi ,
1

τµθ+τθ

)
under σs → 0.

Corollary 2 With the additional assumption that n is decreasing in ϕ, an increase in σµθ can lead

to a higher s∗ and hence a larger proportion of banks suffering runs, Φ
(
s∗−µθ
σθ

)
, for any realized,

unchanged aggregate fundamentals µθ.

With the additional assumption, the market depth is lower precisely when more fire sales occur,

which implies that the fire-sale price discount (or the “run”by other banks via the asset market

in (31)) is convex in the aggregate state µθ. Consequently, an increase in σµθ , which results in

individual creditors being more uncertain about µθ, makes them form expectations of a deeper

fire-sale price discount and thus precipitates their running at a higher threshold, with the feedback

loop as in Figure 8. The macroeconomic literature on economic uncertainty makes similar convexity

assumptions, for example, convexity is assumed in capital adjustment costs (Bachman and Bayer

(2013), Bloom et al. (2018)), in search and matching frictions (Leduc and Liu (2016), Schaal

(2017)), and in price stickiness in new Keynesian models (Basu and Bundick (2017)).

C.2. Shocks to Aggregate Uncertainty and to Bank-Level Dispersion

A large empirical literature documents that in bad economic times, both the uncertainty about

the aggregate (macroeconomic) state and the firm- or bank-level dispersion increase (see, e.g., Al-
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tunbas, Manganelli, and Marques-Ibanez (2011), Bloom (2009), Bloom et al. (2018)). In particular,

bank-level dispersion can rise more than aggregate uncertainty. Corollary 3 follows.

Corollary 3 Consider the case in which there is a unique equilibrium initially in Lemma 6. When

both σµθ and σθ increase and
σµθ
σθ
decreases, multiplicity (with a new less-effi cient stable equilibrium)

can emerge.

Corollary 3 highlights another channel through which an increase in the second moment of

fundamentals has an amplification effect – potential multiplicity jumps as depicted in Figure 6.

In fact, based on (29), a tiny decrease in σµθ/σθ can cause a new (bad) stable equilibrium to

emerge (while the equilibrium threshold s∗ changes little for the original (good) stable equilibrium

because of a tiny change in σµθ/σθ). Intuitively, when bank-level dispersion increases more than

does aggregate uncertainty, creditors’ private signals about their own bank become less precise

for inferring the status of other banks and hence these creditors have to rely more on the prior

(public signal), although the prior also becomes less informative. In this case, self-fulfilling beliefs

in response to the public signal have more room to form and multiplicity becomes more likely.

Remark. Before closing this section, we discuss how the effects of uncertainty shocks are

related to the two-layer structure. First, that aggregate uncertainty has amplification effects in

our model hinges crucially on the existence of an asset market (e.g., Corollary 2). In a one-layer

structure with a single bank where there is no asset market and idiosyncratic uncertainty is also

aggregate uncertainty, aggregate uncertainty has no such effects. Second, Corollary 3 shows the

amplification mechanism that works through the change in aggregate uncertainty relative to bank-

level dispersion. A single-layer model clearly does not have bank-level dispersion. Third, recalling

that the equilibrium for an individual bank i is given by equations (4) and (5) and the prior of

bank i’s fundamentals is θi ∼ N(µθ, σ
2
θ), one may wonder whether the comparative statics

∂s∗

∂σθ
> 0

holds for this single-bank equilibrium. It follows that ∂s∗

∂σθ
= 0 under the limit σs → 0. In contrast,

for the two-layer structure, we have ∂s∗

∂σµθ
> 0 and ∂s∗

∂σθ
≶ 0 under the limit σs → 0.

IV. Policy Implications

In this section, we analyze policy implications of our model, including ex post and ex ante

policies. Our model framework enables us to derive some unique policy implications.

A. Ex Post Policies

A creditor run is ineffi cient ex post because it causes long-term illiquid assets to be prematurely

liquidated and transferred to outside investors.23 In particular, when a bad shock (such as the
23The short-term debt of a bank in our model may play a disciplining role (Calomiris and Kahn (1991), Diamond

and Rajan (2001), and Eisenbach (2017)). For example, without the threat of a creditor run from short-term debt,
the owner of a bank can take an (off-equilibrium) action that makes the bank asset riskier with a negative NPV.
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realization of a low-probability state) hits µθ or k at t = 1, government intervention may be

beneficial.

In the crisis of 2007 to 2009, the Federal Reserve adopted unconventional intervention measures,

including injecting liquidity into financial institutions, creating emergency liquidity facilities for key

credit markets, and directly purchasing long-term securities (Bernanke (2009)).

Using our framework, in this section we examine and compare two broad intervention measures:

providing liquidity support to asset markets and injecting liquidity into banks. We analyze the pros

and cons of each measure, demonstrate the tradeoff, and illuminate the optimal combination.

The timeline is as follows. At t = 0, the balance sheet of a bank is given.24 Banks do not

hold any liquid assets at t = 0 as in the baseline model. At t = 1, the aggregate state (shock) µθ
and the idiosyncratic fundamentals {θi} are realized. Creditors of bank i perfectly observe µθ and
receive a noisy signal about θi. The government observes the aggregate state µθ and may decide

to intervene. Specifically, before creditors make their rollover decisions, the government can use its

limited resources Q to support the banks, the asset market, or both. We make a weak assumption

that the government has no information about individual fundamentals {θi}.

A.1. Supporting the Asset Market

Ggovernment support of the asset market, in the form of directly or indirectly purchasing assets,

can reduce the fire-sale pressure to outside investors and hence boost asset prices, which in turn

makes creditors have less incentive to run in the first place. That is, supporting the asset market

helps break the amplification loop between lower asset prices and more creditor runs.

Suppose the government uses liquidity in amount Q to support the asset market. Consistent

with practice, trading among private agents (who have expertise and information) in the asset

market establishes prices, and given the prices the government uses up the amount Q of liquidity

to buy assets. This is equivalent to the case in which the government and private investors start

a joint (co-investment) program/venture to purchase assets, or in which the government indirectly

purchases part of the assets bought by private investors (this idea of asset purchases was initiated

by Henry Paulson, the then U.S. Secretary of the Treasury, and later implemented by the Fed; see

Bernanke (2015)).

The equilibrium is similar to that in Lemma 3, but with the government’s involvement added.

Concretely, the creditor run-asset market equilibrium at t = 1 is characterized by (s∗, (α, {li}) , ϕ)

for a given (µθ, k,Q), where the new term α denotes the aggregate fraction of liquidated assets

absorbed by outside investors (with the remaining 1 − α fraction absorbed by the government’s
24See Appendix B for the study of the ex ante problem of endogenizing the balance sheet.
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liquidity in equilibrium). The equilibrium solves the system of equations

li = θi − (αϕ) /k
li(θi=s

∗)
F · D(s∗)−1+∆

∆ = 1

ϕ = Φ
(
s∗−µθ
σθ

)
(1− α)

∫ s∗
θi=−∞ li (θi) · dΦ

(
θi−µθ
σθ

)
= Q,

(asset prices of secondary market)

(creditor run of an individual bank)

(aggregate liquidation in the system)

(government’s support for market)

(a)

(b)

(c)

(d)

(32)

where debt function D(θi) is defined in (3).

As an illustration, Figure 9 plots the equilibrium equation V (s∗;Q) = 1, where V (s∗;Q) is

defined similarly to (10), under a set of parameter values µθ = 1.15, σθ = 0.42, F = 0.6, k = 0.56,

R = 1.1, σe = 0.2, and ∆ = 0.1. We can see that a higher Q not only shifts the curve V (s∗;Q) up

but also reduces the curvature, making multiple equilibria less likely.

Figure 9. Equation V (s∗;Q) = 1.

Lemma 7 Supporting the asset market (program (32)) de facto increases the market depth k, so it

not only reduces the run threshold s∗ for a given selected stable equilibrium, but can also eliminate

equilibrium multiplicity.

Supporting the asset market is effectively a price-contingent bailout: when asset prices are lower,

the government is able to buy more distressed assets; to reduce fire-sale pressure to outside investors

by the same level, the government would alternatively need to give banks a bigger bailout in the

form of providing loans to them. Supporting the asset market is particularly effective in containing

severe expectations-driven systemic runs: when a bad expectation about asset prices precipitates

creditors running at a higher s∗, driving down asset prices, precisely at that time government

liquidity, with a fixed aggregate amount, is able to buy more assets, which thus provides a cushion

that dampens the decline in asset prices, so a bad expectation may not arise in the first place.
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That is, the government’s liquidity support to the asset market de facto improves market depth

(the effective market depth can be expressed as k̂ ≡ k/α > k based on (32a)).25

A.2. Supporting Banks

Despite having no information about the asset quality of individual banks, the government can

also choose to inject liquidity directly into banks. Importantly, after obtaining liquidity from the

government, banks can trade in the interbank market, so the government’s liquidity can flow where

it is most needed. This policy can be broadly interpreted as a system-wide credit policy or even

monetary policy.

Suppose the government decides to inject the amount Q of liquidity into banks and distribute it

evenly across banks. Then, after the liquidity injection and before the rollover decisions of creditors

at t = 1, the asset side of a bank’s balance sheet is given by (c, 1), where c = Q is the amount of

cash holdings and 1 is the units of risky assets. Under liquidity injection, the creditor run-asset

market equilibrium at t = 1, characterized by (s∗, (η, s∗∗, {li} , I) , ϕ) for a given (µθ, k,Q), solves

li = θi − (ηϕ) /k
c+li(θi=s

∗)
F · D(s∗)−1+∆

∆ = 1

ϕ = Φ
(
s∗−µθ
σθ

)
ηϕ = Φ

(
s∗−µθ
σθ

)
− Φ

(
s∗∗−µθ
σθ

)
I = s∗∗

s∗∗−(ηϕ)/k∫ s∗∗
θi=−∞

θi
I · dΦ

(
θi−µθ
σθ

)
=
∫ +∞
θi=s∗

c · dΦ
(
θi−µθ
σθ

)
c · 1 = Q,

(asset prices of secondary market)

(creditor run of an individual bank)

(aggregate liquidation in the system)

(assets sold to secondary market)

(interbank rate)

(interbank market clearing)

(government’s injection into banks)

(33)

where D(θi) is defined in (3). For simplicity, we have assumed the following payoff structure for

the government in supporting banks. If a receiving bank suffers a run, it fails and the government

gets nothing back; if a receiving bank survives and hence lends out the government’s support

liquidity in the interbank market, the government obtains the full claims to the interbank lending.26

Essentially, the government provides non-recourse loans to banks (see the evidence in Duygan-Bum

et al. (2013), among others).

The equilibrium given in (33) is essentially that in Proposition 2; the only differences are that

banks’asset side is replaced by (c, 1) and c is determined by the government’s liquidity injection.

25The simple intuition is the following. Consider the asset price equation given in Lemma 1: l = θ − ϕ
k
(with

subscript i removed for simplicity). The market depth corresponds to the slope dl
dϕ

= − 1
k
. With liquidity support

Q, the asset price can be intuitively written as l = θ − ϕ−Q
l

k
, where Q

l
is the amount of assets that the government

purchases and clearly Q
l
increases when l decreases. It then follows that dl

dϕ
= − 1

k̂
, where k̂ = k +Q 1

l2
> k.

26Alternatively, we can assume that the government and the bank equityholder share the claims to the interbank
lending, in which case the model algebra does not change at all. As long as bank depositors do not claim part of the
interbank lending, the interbank return Ĩ defined in (17) does not enter D(s∗), which keeps the analysis clean.
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How cash holdings of banks affect the equilibrium (including multiplicity) is shown in Proposition

2 and discussed around Figure A1 in Appendix A.

Lemma 8 Supporting banks by injecting liquidity into them (program (33)) reduces the run thresh-

old s∗ for a given selected stable equilibrium.

Two channels of mechanisms are at work for the result in Lemma 8. First, each bank has more

cash and hence creditors have less incentive to run. Second, the liquidation values of banks’illiquid

assets are pushed up and creditors have even less incentive to run. The second channel arises

because part of the government’s liquidity enters the interbank market and hence the fire-sale

pressure to outside investors is alleviated and the market depth is in effect improved.

A.3. Optimal Combination of Intervention Measures

Given that the government has limited resources with which to support the system, it is im-

portant to study the optimal strategy for the government in the intervention. Our model formally

characterizes the pros and cons of each measure, and thus allows us to study the optimal combina-

tion of the two measures. In this subsection, we first present the constrained optimization problem

for the government and then analyze the tradeoff and show the optimal combination.

Recall that the government has an aggregate amount Q of liquidity to support the system.

Suppose a portion with an amount Q1 is employed to support the secondary asset market as in

Section IV.A.1 and the remaining portion with an amount Q2 is injected directly into the banks

as in Section IV.A.2, where Q1 + Q2 = Q. The government is to choose the optimal allocation,

(Q1, Q2), for a given Q. We proceed in two steps. First, we solve the creditor run-asset market

equilibrium for a given (Q1, Q2). Second, we find the optimal allocation (Q1, Q2) for a given Q.

In the first step, given the intervention combination (Q1, Q2), the creditor run-asset market

equilibrium at t = 1, characterized by (s∗, (η, α, s∗∗, {li} , I) , ϕ) for a given (µθ, k,Q1, Q2), solves

li = θi − (αηϕ) /k
c+li(θi=s

∗)
F · D(s∗)−1+∆

∆ = 1

ϕ = Φ
(
s∗−µθ
σθ

)
ηϕ = Φ

(
s∗−µθ
σθ

)
− Φ

(
s∗∗−µθ
σθ

)
(1− α)

∫ s∗
θi=s∗∗

li (θi) · dΦ
(
θi−µθ
σθ

)
= Q1

I = s∗∗

s∗∗−(αηϕ)/k∫ s∗∗
θi=−∞

θi
I · dΦ

(
θi−µθ
σθ

)
=
∫ +∞
θi=s∗

c · dΦ
(
θi−µθ
σθ

)
c · 1 = Q2,

(asset prices of secondary market)

(creditor run of an individual bank)

(aggregate liquidation in the system)

(assets sold to secondary market)

(government’s support for market)

(interbank rate)

(interbank market clearing)

(government’s injection into banks)

(34)
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where debt function D(θi) is defined in (3). The equilibrium given in (34) is essentially the combi-

nation of the ones given in (32) and (33); in fact, (32) and (33) correspond to the two extreme cases

Q2 = 0 and Q1 = 0, respectively. Notably, of the aggregate liquidation ϕ (in quantity), a portion

with quantity (1− η)ϕ is sold via interbank trading and the remainder with quantity ηϕ is sold

through the secondary market; of the remainder, a proportion α in quantity or value is absorbed

by outside investors and the rest 1− α is absorbed by the government’s liquidity support. Figure
10 gives an illustration.

Figure 10. Where the liquidated assets with quantity ϕ go.

In the second step, the government’s optimal allocation (Q1, Q2) is given by

max
Q1,Q2

Y (Q1, Q2) ≡


∫ s∗∗
θi=−∞ (θi + c) · dΦ

(
θi−µθ
σθ

)
+
∫ +∞
θi=s∗

(θi + c) · dΦ
(
θi−µθ
σθ

)
+

 α
∫ s∗
θi=s∗∗

[(
θi − αηϕ

k

)
+ c
]
· dΦ

(
θi−µθ
σθ

)
+ (1− α)

∫ s∗
θi=s∗∗

(θi + c) · dΦ
(
θi−µθ
σθ

) 


s.t. (34) and Q1 +Q2 = Q. (35)

In program (35), the objective function is to maximize the aggregate value for the entire banking

sector and the government. Banks with θi ∈ (−∞, s∗∗] fail but their illiquid assets are sold (trans-
ferred) to other banks, so there is no social effi ciency loss, that is, the total value for different final

claimants for such a bank is still the fundamental value θi+c. Similarly, there is no social effi ciency

loss for banks with θi ∈ [s∗,+∞). However, banks with θi ∈ (s∗∗, s∗) suffer ineffi cient fire sales,

and part of their illiquid assets are sold and transferred to lower-valuation outside investors at the

discounted prices li = θi− (αηϕ) /k.27 Note that in (35) we assume that the government cares only

about the welfare of the banking sector. We can alternatively assume that the government also gives

27We can alternatively assume that, like the outside investors, the government is risk-averse. In this case, the
model result does not change qualitatively.
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some weight to the welfare of outside investors, considering that outside investors derive some (con-

sumer) surplus in buying the assets. In this case, because the surplus for the outside investor sector

is given by nE
[
U(W j)| {li}

]
= nE

[
− exp

(
−γ
[∫
qi(vi − li)di

])]
= −n exp

(
−1

2 (γ/k) 1
n (αηϕ)2

)
(see the proof in Appendix A), including this term in the objective function would not qualitatively

change the optimization result in Proposition 5 below when γ is high enough.

Now we compare the mechanism behind the two intervention measures, listed in Figure 11.

Figure 11. Comparison of mechanism behind intervention measures in affecting run

incentive (s∗).

The objective function in (35) implies that the government intends to reduce the run threshold s∗

(and consequently reduce aggregate ineffi cient fire sales αηϕ). Based on the creditor-run equilibrium

equation in (34), there are two ways to do this: increase liquid asset holdings c and increase the

liquidation value li of illiquid assets of individual banks, which give three channels of mechanism

in Figure 11.

Supporting the asset market over supporting banks has advantages in Channel 2 but disad-

vantages in Channels 1 and 3. The comparison in Channel 1 in Figure 11 is easy to understand.

To understand the comparison in Channels 2 and 3, based on (34) we calculate the quantity of

distressed assets effectively purchased with the government’s liquidity Q1, which is given by

(1− α) ηϕ =
Q1

E (li (θi) |θi ∈ (s∗∗, s∗))
, (via the support for market) (36)

where the denominator is the average price of the purchased assets. Note that outside investors

purchase assets with quality in the range θi ∈ (s∗∗, s∗). Similarly, we calculate the quantity of

distressed assets effectively purchased with the government’s liquidity Q2, which is given by

(1− η)ϕ =

∫ +∞
θi=s∗

c · dΦ
(
θi−µθ
σθ

)
(∫ s∗∗

θi=−∞
θi
I · dΦ

(
θi−µθ
σθ

))
/ ((1− η)ϕ)

=
Q2 (1− ϕ)

E (θi |θi ≤ s∗∗ ) /I
, (via the support for banks)

(37)

where the numerator is the aggregate liquidity from the surviving banks θi ∈ [s∗,+∞), which enters
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the interbank market, and the denominator is the average price of the purchased assets. Note that

interbank trading purchases assets with quality in the range θi ≤ s∗∗.

In comparing (36) and (37), we see the difference. Supporting the asset market means that

all of the government’s support liquidity enters the asset market, whereas supporting banks means

that only part of the government’s liquidity – the part that ends up in surviving banks – enters

the interbank market. This is reflected in the difference between the two numerators. On the

other hand, for the same amount of liquidity entering the asset/interbank market, the liquidity for

interbank trading is more effi cient in tackling the asset market stress than is the liquidity for outside

investors. This is because the former purchases the most distressed assets θi ∈ (−∞, s∗∗] while the
latter purchases the less-distressed assets θi ∈ (s∗∗, s∗). In fact, comparing the two denominators,

E (li (θi) |θi ∈ (s∗∗, s∗)) > E (θi |θi ≤ s∗∗ ) /I holds. The “quantity—quality (effi ciency)” tradeoff

above can be alternatively illustrated by asking what the government’s payoff is if it gives $ 1 to

the market versus to banks. The payoff is 1 · E(θ|θi∈(s∗∗,s∗) )
E(li(θi)|θi∈(s∗∗,s∗) ) versus (1− ϕ) · I, where the two

returns clearly satisfy E(θ|θi∈(s∗∗,s∗) )
E(li(θi)|θi∈(s∗∗,s∗) ) < I.28

Under either intervention, the government’s support liquidity Q will enter the banking system

and in the end enter the failure banks which sell assets; see Figure 10. However, the two intervention

measures have different implications for the distribution of Q among failure banks and for the

amount of outside liquidity entering the banking system (which is endogenous).

Proposition 5 Given a low Q, the government’s optimal allocation of liquidity, (Q1, Q2), in sup-

porting the system is given by program (35). There exist the following cases.

i) When (µθ, k) is in the region such that in equilibrium the proportion of banks suffering runs

in the system, ϕ = Φ
(
s∗−µθ
σθ

)
, is high enough, the optimal allocation is (Q1, Q2) = (Q, 0).

ii) When (µθ, k) is in the region such that ϕ = Φ
(
s∗−µθ
σθ

)
is low enough, the optimal allocation

is (Q1, Q2) = (0, Q).

iii) When (µθ, k) is in the region such that ϕ = Φ
(
s∗−µθ
σθ

)
is at an intermediate level, the

optimal allocation is (Q1, Q2) with Q1 > 0 and Q2 > 0.

Proposition 5 implies that for a very severe (grave) crisis (case i), it is optimal for the government

to use its limited resources to support the asset market only; for a mild crisis (case ii), supporting

banks only is optimal; and for a severe crisis (case iii), it is optimal to mix support to banks and

support to the asset market. Figure 12 provides an illustration based on a simulation exercise,

where Y (Q1, Q2) is the objective function in (35) and the parameter values are the same as in

Figure 7, that is, Q = 0.01, σθ = 0.2, F = 0.6, k = 0.9, R = 1.1, σe = 0.2, and ∆ = 0.1.

28Outside our model, as long as bank buyers are more effi cient than outside investors in “arbitrage” (due to
preference, information, expertise, or other frictions), the tradeoff identified here likely still holds.
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Figure 12. Optimal combination of intervention measures.

We explain the economic intuition behind Proposition 5, beginning with the corner solutions for

cases i) and ii). When the crisis is very severe (with a large proportion of banks failing and deeply-

discounted asset prices), supporting the asset market is optimal. In fact, in this scenario, survival

banks are few (i.e., 1− ϕ is low), so supporting banks would result in very little liquidity entering
the interbank market – this disadvantage in “quantity”(Channel 2) far exceeds its advantage in

“effi ciency” (Channel 3). Moreover, the advantage in Channel 1 of supporting banks is dwarfed,

considering that supporting the asset market is a “price-contingent”bailout: when the asset prices

are low, the government’s liquidity support can purchase a large amount of assets, so at that

moment supporting the asset market is much more effective.29 In contrast, when the crisis is mild,

survival banks abound (1−ϕ is high), so the disadvantage in “quantity”of supporting banks is not
much and is outweighed by its advantage in “effi ciency”(Channel 3) together with its advantage

in Channel 1.

We turn next to the interior solution for case iii). An interior solution exists because of the

“diminishing returns” effect of supporting the asset market (i.e., ∂Y
∂Q1

is decreasing in Q1), given

that a higher Q1 pushes up the prices and reduces its own marginal effect. Note that the marginal

effect ∂Y
∂Q2

is less sensitive to Q2 (than ∂Y
∂Q1

is to Q1), as Channel 1 of the mechanism does not

depend directly on the asset prices or the aggregate state. Overall, equating the two marginal

effects, ∂Y
∂Q1

= ∂Y
∂Q2

, yields an interior solution of Q1.

So far we have assumed that, in the case of providing liquidity support to banks, the government

distributes the liquidity evenly across banks. Based on Section II.B, when the crisis is of high

severity (i.e., a low realization of µθ or k), an increase in the dispersion of cash holdings can improve

29To isolate the effect via Channel 1 of supporting banks, we can consider the policy in Section IV.A.2 but shut
down the interbank trading, in which case the equilibrium given in program (33) is revised and the illiquidity risk
corresponds to c+ li (θi) = θi−ϕ/k +Q. In contrast, the effect of supporting the market is characterized by program
(32), in which the illiquidity risk corresponds to li = θi − (αϕ) /k = θi − ϕ/k + Q

l̄
/k, where l̄ = E (li (θi) |θi < s∗ ).

Clearly, when the crisis is very severe, supporting the market is more effective.
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effi ciency. Now let us consider the policy of providing differential support to banks. Specifically, we

consider a simple form of differential support: the government, despite having no information about

the asset quality of individual banks, randomly gives half of the banks more liquidity and the other

half less liquidity, that is, there are two types of banks (type-A and type-B) with ci ∈
{
cA, cB

}
,

where 1
2

(
cA + cB

)
= Q. Under this policy, the equilibrium is as given in Section II.B.

Corollary 4 Given a low Q, when the crisis is severe enough (i.e., a low µθ or k) and support-

ing the asset market only is optimal in Proposition 5 (case i), the alternative policy of providing

differential support to banks is less effective.

Providing differential liquidity support to banks is more effective than providing equal liquidity

support to banks when the crisis is of high severity, as shown in Proposition 3. However, it is still

less effective than supporting only the asset market in such circumstances. The simulation results

in Figures 7 and 12 illustrate. Under the same set of parameter values, Figure 7 implies that

providing differential support to banks achieves the maximum value of the objective function given

in (35) as Y = µθ + c − (ηϕ)2 /k = 0.283 at ci ∈
{
cA = 0.02, cB = 0

}
; in contrast, the maximum

value of the objective function in the left panel of Figure 12 is Y = 0.294.

The policy of providing differential support to banks overcomes, to some extent, the weakness of

the policy of providing equal support to banks (Channel 2 in Figure 11). However, when the crisis

is severe enough, even type-A banks with a higher level of cash holdings cA have a low probability of

surviving and thus supporting banks would still result in very little liquidity entering the interbank

market. Directly supporting the asset market is more effective in such circumstances.

B. Ex ante Policies

Basel III introduces requirements on liquid asset holdings, strengthening the requirements from

the Basel II standard on banks’minimum capital (leverage) ratios (see Basel Committee on Banking

Supervision (2011)). Our model provides a rationale for the new regulation.

Specifically, we endogenize liquid asset holdings at t = 0 in our model, study the optimal level of

liquidity holdings for banks, and address the question of whether individual banks’choice is socially

optimal. We show that individual banks’optimal level of liquid asset holdings in the decentralized

equilibrium is typically lower than the constrained social optimum, which gives a rationale for the

regulation on liquid asset holdings. To save space, the details are relegated to Appendix B.

As for banks’capital (leverage) ratios highlighted in Basel II, Eisenbach (2017) studies banks’

optimal choice of the short-term debt level as market discipline in general equilibrium, which

complements our work addressing banks’liquid asset holdings.
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V. Conclusion

This paper presents a tractable framework of bank runs in the market-based banking system.

In the system context, a run on one bank is affected by, and affects, runs on other banks. Each

individual bank essentially faces a run by its own creditors and “runs” by other banks via the

asset market. Rollover decisions of creditors and asset market prices are jointly determined in

equilibrium. Our model with this two-layer structure – creditors run on banks and banks with

heterogeneous fundamentals interact in the asset market – offers insights that cannot be obtained

from a model with a single-layer structure. Our model also has unique policy implications. The

model framework is highly tractable and extendable and hence potentially useful for future research.
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Appendix

A Proofs

Proof of Lemma 1: Given that the price li fully reveals the fundamentals θi, an investor does
not rely on his private information in trading. Hence, all investors are basically the same (as a
representative investor). Thus, the objective function of (1) can be transformed into one maximizing∫
qi(θi − li)di− 1

2γV ar
(
e
∫
qidi

)
=
∫
qi(θi − li)di− 1

2γσ
2
e

(∫
qidi

)2.
The FOC with respect to any qi implies (θi − li)di− γσ2

e

(∫
qidi

)
di = 0, that is,

∫
qidi = θi−li

γσ2
e

for any i. Different risky assets are perfect substitutes as long as their risk premium is the same.
Because n

∫
qidi = ϕ by the market-clearing condition, we have li = θi−ϕ/k, where k ≡ n/

(
γσ2

e

)
.

Proof of Lemmas 2 and 3: The distribution of vi under a higher θi has first-order stochastic
dominance over that under a lower θi. Because function min

[
R, viF

]
is non-decreasing in vi and

strictly increasing for some ranges of vi, D(θi;R) ≡ E
(
min

[
R, viF

]
|θi
)
is increasing in θi. Also,

lim
θi→+∞

D(θi;R) = R.

By (4), we can obtain θ∗ as a function of s∗, that is, function θ∗ (s∗) is given by the implicit

function s∗ = θ∗+ σsΦ
−1
(
θ∗−ϕ/k

F

)
. Then, we replace θ∗ in (5) with s∗ by plugging in the function

θ∗ (s∗). Clearly, (5) can be rewritten as

∫ +∞

θi=θ
∗

(D(θi)− 1) dΦ

θi −
(

τθ
τθ+τs

µθ + τs
τθ+τs

s∗
)

√
1

τθ+τs

 =

∫ θi=θ
∗

θi=−∞
∆dΦ

θi −
(

τθ
τθ+τs

µθ + τs
τθ+τs

s∗
)

√
1

τθ+τs

 .

(A.1)
Write the LHS of (A.1) as V L (s∗;σs). We transform V L (s∗;σs) by changing variables to z =
θi−

(
τθ

τθ+τs
µθ+ τs

τθ+τs
s∗
)

√
1

τθ+τs

and obtain V L (s∗;σs) =
∫∞
z=z0

[
D
(√

1
τθ+τs

z +
(

τθ
τθ+τs

µθ + τs
τθ+τs

s∗
))
− 1
]
φ (z) dz,

where z0 satisfies the joint equations

z0 =
θ∗ −

(
τθ

τθ+τs
µθ + τs

τθ+τs
s∗
)

√
1

τθ+τs

and s∗ = θ∗ + σsΦ
−1

(
θ∗ − ϕ/k

F

)
. (A.2)

By (A.2), we have s∗ −
[
z0

√
1

τθ+τs
+
(

τθ
τθ+τs

µθ + τs
τθ+τs

s∗
)]

= σsΦ
−1
(
θ∗−ϕ/k

F

)
, or

z0 =

τθ
τθ+τs

(s∗ − µθ)√
1

τθ+τs

− σs√
1

τθ+τs

Φ−1


(

τθ
τθ+τs

µθ + τs
τθ+τs

s∗
)

+ z0

√
1

τθ+τs
− ϕ/k

F

 .

So it follows that lim
σs→0

z0 = −Φ−1
(
s∗−ϕ/k

F

)
. Thus, under the limit σs → 0 for a given τ θ, we have

θ∗ = s∗ and lim
σs→0

V L (s∗;σs) = (D(s∗)− 1) ·
∫∞
−Φ−1

(
s∗−ϕ/k

F

) φ (z) dz = (D(s∗)− 1) · s
∗−ϕ/k
F . Similarly,

writing the RHS of (A.1) as V R (s∗;σs), we have lim
σs→0

V R (s∗;σs) = ∆ ·
(

1− s∗−ϕ/k
F

)
. Therefore,
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(7) is proved. Clearly, (7) has a unique solution s∗ and hence a unique equilibrium. Note that an
equilibrium s∗ must satisfy the conditions 0 < s∗−ϕ/k

F ≤ 1 and D(s∗) ≥ 1.

Second, we prove that a creditor rolls over when his signal is higher than s∗ and otherwise
withdraws. Denote by s∗h the threshold used by an individual creditor and by s∗ the threshold
used by other creditors of the same bank as well as by creditors of other banks. Writing the LHS
minus the RHS of (A.1) as Ṽ

(
s∗h; s∗, µθ, σs

)
, we obtain

Ṽ
(
s∗h; s∗, µθ, σs

)
=


∫ +∞
θi=θ

∗ (D(θi)− 1) dΦ

(
θi−

(
τθ

τθ+τs
µθ+ τs

τθ+τs
s∗h
)

√
1

τθ+τs

)

−
∫ θi=θ∗
θi=−∞∆dΦ

(
θi−

(
τθ

τθ+τs
µθ+ τs

τθ+τs
s∗h
)

√
1

τθ+τs

)
 , (A.3)

where θ∗ = θ∗ (s∗) is given by the implicit function s∗ = θ∗ + σsΦ
−1
(
θ∗−ϕ/k

F

)
, implying that θ∗ is

an increasing function of s∗. An individual creditor h takes s∗ or θ∗ as given. It is easy to obtain
∂Ṽ
∂s∗h

> 0 and ∂Ṽ
∂s∗ < 0 at

(
s∗h = s∗, s∗

)
with Ṽ

(
s∗h; s∗, µθ, σs

)
= 0.

By changing variables to z = θi−Ξ√
1

τθ+τs

with Ξ = τθ
τθ+τs

µθ+
τs

τθ+τs
s∗h, we obtain Ṽ

(
s∗h; s∗, µθ, σs

)
=

∫ +∞

z= θ∗−Ξ√
1

τθ+τs

[
D
(√

1
τθ+τs

z + Ξ
)
− 1
]
φ (z) dz −

∫ θ∗−Ξ√
1

τθ+τs

z=−∞
∆ · φ (z) dz

. Define V̂ (s∗) := (D(s∗)− 1) s
∗−ϕ/k
F −

∆
(

1− s∗−ϕ/k
F

)
. Clearly, V̂ (s∗) = lim

σs→0
Ṽ
(
s∗h = s∗; s∗, µθ, σs

)
. A symmetric equilibrium under

σs → 0 is given by V̂ (s∗) = 0, which is equation (7). Note that function V (s∗) on the LHS of (10)
is a linear transformation of V̂ (s∗), that is, V (s∗) = 1

∆ V̂ (s∗) + 1. Hence, equation V̂ (s∗) = 0 is
equivalent to equation V (s∗) = 1.

Next, we prove the comparative statics. It is straightforward to show that ∂ϕ
∂s∗ > 0 in (9). As

for ∂s∗

∂ϕ > 0 in (7), (7) corresponds to equation V̂ (s∗, ϕ) = 0 and we have ∂V̂
∂s∗ = dD(s∗)

ds∗
s∗−ϕ/k

F +

1
F (D(s∗)− 1 + ∆) > 0 and ∂V̂

∂ϕ = (D(s∗)− 1 + ∆)
(
−1/k
F

)
< 0, and thus ∂s∗

∂ϕ = −∂V̂
∂ϕ /

∂V̂
∂s∗ > 0.

Finally, we show that a stable equilibrium corresponds to dV̂ (s∗)
ds∗ > 0 at the equilibrium solution

s∗ to V̂ (s∗) = 0 and an unstable equilibrium corresponds to dV̂ (s∗)
ds∗ < 0 at the equilibrium solution

s∗. At an equilibrium point
(
s∗h = s∗, s∗

)
, it is a stable equilibrium if and only if dV̂ (s∗)

ds∗ > 0 is
satisfied. This is because

dV̂ (s∗)

ds∗
> 0⇔ Ṽ

(
s∗h + ∆, s∗ + ∆

)
− Ṽ

(
s∗h, s∗

)
> 0 for a small ∆ > 0

⇔ ∂Ṽ

∂s∗h
+
∂Ṽ

∂s∗
> 0⇔ ∂s∗h

∂s∗
= − ∂V/∂s∗

∂Ṽ /∂s∗h
< 1,

by noting that ∂Ṽ
∂s∗h

> 0 and ∂Ṽ
∂s∗ < 0. Similarly, at an equilibrium point

(
s∗h = s∗, s∗

)
, it is an

unstable equilibrium if and only if dV (s∗)
ds∗ < 0 is satisfied. As V (s∗) is a linear transformation of

V̂ (s∗), a stable equilibrium also corresponds to ∂V (s∗)
∂s∗ > 0 at the equilibrium point s∗ and an

unstable equilibrium to ∂V (s∗)
∂s∗ < 0 at the equilibrium point s∗.
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Proof of Proposition 1: Write the LHS of (10) as function V (s∗;µθ, k), where

V (s∗;µθ, k) =

{
1

F

[
s∗ − Φ

(
s∗ − µθ
σθ

)/
k

]}
D(s∗)− 1 + ∆

∆
. (A.4)

It is easy to show that

∂V (s∗;µθ,k)
∂s∗ = 1

F

[
1− φ

(
s∗−µθ
σθ

)
1
kσθ

]
D(s∗)−1+∆

∆ + 1
F

[
s∗ − Φ

(
s∗−µθ
σθ

)/
k
]
D
′
(s∗)
∆ ,

∂V (s∗;µθ,k)
∂µθ

=
{

1
F

[
1
σθ
φ
(
s∗−µθ
σθ

)/
k
]}

D(s∗)−1+∆
∆ > 0,

∂V (s∗;µθ,k)
∂k =

{
1
F

[
Φ
(
s∗−µθ
σθ

)/
k2
]}

D(s∗)−1+∆
∆ > 0.

(A.5)

By (A.5), when s∗ is suffi ciently higher or lower than µθ, 1−φ
(
s∗−µθ
σθ

)
> 0 and hence ∂V (s∗;µθ,k)

∂s∗ > 0.

When s∗ is at an intermediate level close to µθ, it can be
∂V (s∗;µθ,k)

∂s∗ < 0 and thus V (s∗;µθ, k) can be
non-monotonic in s∗. Because there can be at most only one continuous interval around µθ in which
∂V (s∗;µθ,k)

∂s∗ < 0, the non-monotonic curve of V (s∗;µθ, k) is “N”-shaped in s∗ (i.e., increasing first
and then decreasing before increasing again). So V (s∗;µθ, k) = 1 can admit one or (generically)
three solutions with respect to s∗.

i) When k is high enough, ∂V (s∗;µθ,k)
∂s∗ > 0 also holds for any s∗, so V (s∗;µθ, k) = 1 admits a

unique solution with respect to s∗.

When µθ decreases, the curve V (s∗;µθ, k) shifts downward in Figure 5. When µθ is low enough,
the curve V (s∗;µθ, k) intersects the horizontal line V = 1 only once for any k, so V (s∗;µθ, k) = 1
admits a unique solution with respect to s∗.

ii) Consider a suffi ciently high µθ such that the curve V (s∗;µθ, k) could intersect the horizontal
line V = 1 more than once for some k. A decrease in k not only increases the curvature of
V (s∗;µθ, k) but also shifts the curve V (s∗;µθ, k) downward by ∂V (s∗;µθ,k)

∂k > 0. Hence, when k is
suffi ciently high or suffi ciently low, V (s∗;µθ, k) = 1 admits a unique solution with respect to s∗.
When k is not too high and not too low, V (s∗;µθ, k) = 1 admits multiple (typically three) solutions
with respect to s∗.

iii) Consider a suffi ciently low k such that ∂V (s∗;µθ,k)
∂s∗ < 0 at some s∗ (i.e., V (s∗;µθ, k) is non-

monotonic with respect to s∗). Considering that the curve V (s∗;µθ, k) shifts downward as µθ
decreases, V (s∗;µθ, k) = 1 admits multiple (typically three) solutions with respect to s∗ when µθ is
not too high and not too low and a unique solution when µθ is suffi ciently high or suffi ciently low.

iv) Based on the result in the proof of Lemma 2, at a stable equilibrium ∂V (s∗)
∂s∗ > 0. Because

∂V (s∗;µθ,k)
∂µθ

> 0 and ∂V (s∗;µθ,k)
∂k > 0, it follows that ∂s∗

∂µθ
= −∂V/∂µθ

∂V/∂s∗ < 0 and ∂s∗

∂k = − ∂V/∂k
∂V/∂s∗ < 0.

Considering ϕ = Φ
(
s∗−µθ
σθ

)
, it follows that ∂ϕ

∂µθ
< 0 and ∂ϕ

∂k < 0.

Proof of Lemma 4: The proof is straightforward and hence omitted.

Proof of Lemma 5: Plugging (14) into (15), it follows that

s∗∗ − (ηϕ) /k

s∗∗

∫ s∗∗

θi=−∞
(1− c) θi · dΦ

(
θi − µθ
σθ

)
=

∫ +∞

θi=s∗
c · dΦ

(
θi − µθ
σθ

)
, (A.6)
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where ηϕ = (1− c)
(

Φ
(
s∗−µθ
σθ

)
− Φ

(
s∗∗−µθ
σθ

))
. When c = 0, the equilibrium reverts to the baseline

model. Consider c > 0. For a given (s∗, c), the LHS of (A.6) is increasing in s∗∗. Therefore,

when c is suffi ciently high such that c
[
1− Φ

(
s∗−µθ
σθ

)]
≥ (1− c)

[∫ s∗
θi=−∞ θi · dΦ

(
θi−µθ
σθ

)]
, we have

the corner solution s∗∗ = s∗, and thus η = 0, li = θi for all i, and I = 1; otherwise there is
a unique solution s∗∗ ∈ (s, s∗), where the lower bound s is the solution to I|s∗∗=s = +∞ or

s− (1− c)
(

Φ
(
s∗−µθ
σθ

)
− Φ

(
s−µθ
σθ

))
/k = 0. After obtaining s∗∗, we can find l (·), I, l̂ (·), and Ĩ.

Proof of Proposition 2: The equilibrium solves the system of equations (A.6) and (18).

1) The effect of k. First, we show that (A.6) gives ∂(ηϕ)
∂s∗ > 0, ∂I

∂s∗ > 0, ∂((ηϕ)/k)
∂k < 0, and

∂I
∂k < 0. For ∂(ηϕ)

∂s∗ > 0, we prove by contradiction. Suppose an increase in s∗ leads to ηϕ decreasing,

which implies that s∗∗ must be increasing by ηϕ = (1− c)
(

Φ
(
s∗−µθ
σθ

)
− Φ

(
s∗∗−µθ
σθ

))
; then the

LHS of (A.6) is increasing in s∗. This forms a contradiction because the RHS of (A.6) is decreasing
in s∗. After obtaining ∂(ηϕ)

∂s∗ > 0, we prove that (A.6) also gives ∂I
∂s∗ > 0. Suppose an increase

in s∗ leads to I decreasing, which implies that s∗∗ must be decreasing to maintain equality in
(15). This forms a contradiction to 1

I = s∗∗−(ηϕ)/k
s∗∗ by considering that we have proved ∂(ηϕ)

∂s∗ > 0.

We turn to proving ∂((ηϕ)/k)
∂k < 0 by contradiction. Suppose an increase in k leads to (ηϕ) /k

increasing, which implies that ηϕ must be increasing, which then implies that s∗∗ is decreasing

by ηϕ = (1− c)
(

Φ
(
s∗−µθ
σθ

)
− Φ

(
s∗∗−µθ
σθ

))
; then, on the LHS of (A.6), both s∗∗−(ηϕ)/k

s∗∗ and s∗∗

are decreasing, so equality in (A.6) cannot be true, which forms a contradiction. After obtaining
∂((ηϕ)/k)

∂k > 0, we also have ∂I
∂k < 0, with a similar logic as earlier. Second, it is easy to show that

(18) gives ∂s∗

∂((ηϕ)/k) > 0, similar to the proof for ∂s∗

∂ϕ > 0 in (7). Also, a change in Ĩ caused by a

change in s∗∗ affects D̂(s∗), but the effect is small under a suffi cient condition that σe is big enough.
Third, combining the two steps above yields the feedback loop: ∂((ηϕ)/k)

∂k < 0 and ∂((ηϕ)/k)
∂s∗ > 0

in (A.6) and ∂s∗

∂((ηϕ)/k) > 0 in (18). The loop is similar to the one in Lemma 3 and Proposition 1.

Overall, ∂s
∗

∂k < 0, ∂((ηϕ)/k)
∂k < 0, and ∂I

∂k < 0.

2) The effect of c. (A.6) gives ∂(ηϕ)
∂c < 0 and ∂I

∂c < 0, which can be proved by contra-

diction as in 1). Write the LHS of (18) as V (s∗; c) = c+(1−c)[s∗−(ηϕ)/k]
F · D̂(s∗)−1+∆

∆ , implying
∂V (s∗;c)

∂c = [1−(s∗−(ηϕ)/k)]
F

D̂(s∗;c)−1+∆
∆ + c+(1−c)·(s∗−(ηϕ)/k)

F
1
∆
∂D̂(s∗;c)

∂c . Note that s∗ − (ηϕ) /k < 1 by

considering that c+(1−c)·(s∗−(ηϕ)/k)
F ≤ 1; moreover, ∂D̂(s∗;c)

∂c is positive or a small negative number by

noting that it can be I > s∗ when c is not large. Overall, ∂V (s∗;c)
∂c > 0 when c is not large. Hence,

by the implicit function theorem, ∂s
∗

∂c = −∂V (s∗;c)
∂c /∂V (s∗;c)

∂s∗ < 0, noting that at a stable equilibrium
∂V (s∗;c)
∂s∗ > 0 (see the proof of Lemma 2). So (18) gives ∂s∗

∂((ηϕ)/k) > 0 and ∂s∗

∂c < 0. Thus, (A.6) and

(18) together form a feedback loop: ∂((ηϕ)/k)
∂c < 0 and ∂((ηϕ)/k)

∂s∗ > 0 in (A.6) and ∂s∗

∂((ηϕ)/k) > 0 and
∂s∗

∂c < 0 in (18). Hence, ∂s
∗

∂c < 0, ∂((ηϕ)/k)
∂c < 0, and ∂I

∂c < 0. A change in c has a direct effect on s∗

through ∂s∗

∂c < 0 by (18) and also an indirect effect on s∗ through the combination of ∂((ηϕ)/k)
∂c < 0

by (A.6) and ∂s∗

∂((ηϕ)/k) > 0 by (18), that is, ds
∗

dc <
∂s∗

∂c < 0, where ds∗

dc denotes the total effect.

Write the LHS of (18) as V (s∗; c, k) = c+(1−c)[s∗−(ηϕ)/k]
F · D̂(s∗)−1+∆

∆ , where ηϕ and Ĩ in D̂(s∗)
are endogenous and given by (A.6) and (17). Figure A1 plots equation V (s∗; c, k) = 1 under a set
of parameter values µθ = 1.6, σθ = 0.6, F = 0.6, R = 1.1, σe = 0.2, and ∆ = 0.6. Under the same
set of parameter values, Figure A2 plots comparative statics in Proposition 2, where k = 0.28 in
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the left panel and c = 0.003 in the right panel.

Liquidity holdings of banks affect systemic runs through three channels. First, banks rely
less on the asset market to fetch liquidity to accommodate creditors’early withdrawals and hence
expectations about the aggregate market condition become less important. Second, the liquidity
holdings of peer (strong) banks enter the asset market and provide a cushion for the downward-
sloping fire-sale prices determined by risk-averse outside investors. The market depth k is in effect
increased. The effective market depth can be expressed as k̂ ≡ k/η > k based on (13). Third, the
asset market condition can be more sensitive to expectations. Specifically, a higher s∗ corresponds
to more demand for liquidity coupled with less supply – two joint forces (see (15)), in contrast
to the baseline model in which a higher s∗ corresponds to more demand (ϕ) but no change on the
supply side. The forces of the first two channels make expectation-driven equilibrium multiplicity
less likely whereas the force of the third channel makes it more likely. We see in Figure A1 that
the curvature of V (s∗; c, k) can be higher under higher cash c than under lower c in some regions
of s∗.

Figure A1. Equation V (s∗; c, k) = 1.

Figure A2. Comparative statics in Proposition 2.
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Proof of Proposition 3: Due to the complexity of the general-equilibrium nature of the model
with many endogenous variables, we focus on characterizing the economic forces behind the com-
parative statics, show that the result holds under some conditions, and confirm the result by the
simulation exercise for a large parameter space. The logic of the proof is as follows. In the first
step, suppose the interbank market is closed (i.e., banks that realize stronger fundamentals and
thus face fewer interim withdrawals hold their liquidity, rather than supplying liquidity to the asset
market) and calculate the net amount of excess liquidity Π. In the second step, let the interbank
market open and examine how the equilibrium changes to clear the asset (interbank) market, and
evaluate the effect on ηϕ.

We start from the first step. Consider the special case of a simple binomial distribution of
G (·) to illustrate the intuition. Specifically, assume ci ∈

{
cA, cB

}
with equal probability for each

realization, that is, half of the banks have a higher amount cA of liquidity (type-A banks) while
the other half have a lower amount cB (type-B banks), where cA > cB. Then (24) becomes

Π
(
cA, cB

)
=


1
2

[
cA
∫ +∞
θi=s∗(cA) dΦ

(
θi−µθ
σθ

)
+ cB

∫ +∞
θi=s∗(cB) dΦ

(
θi−µθ
σθ

)]
−1

2

[∫ s∗(cA)
θi=−∞ θi · dΦ

(
θi−µθ
σθ

)
+
∫ s∗(cB)
θi=−∞ θi · dΦ

(
θi−µθ
σθ

)]
 .

Now consider a mean-preserving spread: ci ∈
{
cA + ∆c, c

B −∆c

}
, where ∆c > 0. When ∆c → 0,

Π
(
cA + ∆c, cB −∆c

)
−Π

(
cA, cB

)
=


1

2
∆c

(
Pr
(
θi > s∗

(
cA
))
− Pr

(
θi > s∗

(
cB
)))

︸ ︷︷ ︸
additional amount ∆c more likely remain in banking system

+
1

2

[(
cA + s∗

(
cA
))

∆pA −
(
cB + s∗

(
cB
))

∆pB

] ,
(A.7)

where ∆pA =
(
−∂s∗(c)

∂c

)
1
σθ
φ
(
s∗(c)−µθ

σθ

)∣∣∣
c=cA

· ∆c and ∆pB =
(
−∂s∗(c)

∂c

)
1
σθ
φ
(
s∗(c)−µθ

σθ

)∣∣∣
c=cB

· ∆c.

Under the suffi cient condition that k is high enough, the indirect effect of {ci} through ϕ on s∗
is small relative to the direct effect of ci on s∗ in (22). The first term in the second line of (A.7)
is positive by s∗

(
cA
)
< s∗

(
cB
)
. The second term is also positive under certain conditions. First,

when (µθ, k) is in the region such that the crisis is severe with µθ < s∗
(
cA
)
< s∗

(
cB
)
, it follows

that φ
(
s∗(cA)−µθ

σθ

)
> φ

(
s∗(cB)−µθ

σθ

)
and consequently ∆pA > ∆pB when σθ is small enough, by

noting that the force of −∂s∗(c)
∂c is dominated by the force of φ

(
s∗(c)−µθ

σθ

)
when σθ is small enough.

Second, cA > cB while s∗
(
cA
)
< s∗

(
cB
)
, which implies that the difference between cA + s∗

(
cA
)

and cB + s∗
(
cB
)
can be small, and the force ∆pA > ∆pB dominates when σθ is small enough, so(

cA + s∗
(
cA
))

∆pA −
(
cB + s∗

(
cB
))

∆pB > 0.

The economic intuition is as follows. When the crisis is severe (i.e., µθ < s∗
(
cA
)
< s∗

(
cB
)
),

it is optimal to give an additional amount of liquidity to relatively cash-rich banks rather than
to relatively cash-poor banks. The additional amount of liquidity can significantly increase the
survival probability for the latter type of banks while increasing little that for the former type (i.e.,
∆pA > ∆pB). Moreover, the additional amount is more likely to stay in the banking system (rather
than end in depositors’pockets) because the relatively cash-rich banks have a higher probability of
surviving in the first place.
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Consider the general case. Denote ΛS (ci) = ci

[
1− Φ

(
s∗(ci)−µθ

σθ

)]
and ΛD (ci) = Γ(s∗ (ci)) =∫ s∗(ci)

θi=−∞ θidΦ
(
θi−µθ
σθ

)
, and Λ (ci) = ΛS (ci)− ΛD (ci). Hence,

∂ΛS (ci)

∂ci
=

[
1− Φ

(
s∗ (ci)− µθ

σθ

)]
+ ci

[
φ

(
s∗ (ci)− µθ

σθ

)
1

σθ

(
−ds

∗ (ci)

dci

)]
∂ΛD (ci)

∂ci
= s∗ (ci)

[
φ

(
s∗ (ci)− µθ

σθ

)
1

σθ

(
ds∗ (ci)

dci

)]
∂Λ (ci)

∂ci
=

[
1− Φ

(
s∗ (ci)− µθ

σθ

)]
+ (ci + s∗ (ci))

[
φ

(
s∗ (ci)− µθ

σθ

)
1

σθ

(
−ds

∗ (ci)

dci

)]
.

To show dΛ2(ci)
dc2i

> 0 is to show ∂Λ(ci)
∂ci

∣∣∣
c=cA

> ∂Λ(ci)
∂ci

∣∣∣
c=cB

for cA > cB. It follows that

∂Λ (ci)

∂ci

∣∣∣∣
ci=cA

− ∂Λ (ci)

∂ci

∣∣∣∣
ci=cB

=

[
Φ

(
s∗
(
cB
)
− µθ

σθ

)
− Φ

(
s∗
(
cA
)
− µθ

σθ

)]

+


{

(ci + s∗ (ci))
[
φ
(
s∗(ci)−µθ

σθ

)
1
σθ

(
−ds∗(ci)

dci

)]}∣∣∣
ci=cA

−
{

(ci + s∗ (ci))
[
φ
(
s∗(ci)−µθ

σθ

)
1
σθ

(
−ds∗(ci)

dci

)]}∣∣∣
ci=cB

 ,
where the first term is positive, and the second term is positive if µθ < s∗

(
cA
)
< s∗

(
cB
)
and σθ is

small enough. Similarly, ∂Λ2
S(ci)

∂c2i
> 0 when σθ is suffi ciently small. Consider two distributions G

′
(·)

and G
′′

(·), where G′ second-order stochastically dominates G′′ . Then, SL and Π = SL−DL are
both higher under G

′′
than under G

′
, while DL can be higher or lower under G

′′
than under G

′
.

We proceed to the second step. When c is small enough, s∗∗ is below s∗ (ci) for all ci. The

market-clearing condition (21) can be rewritten as DL−DLM
I = SL, where I = s∗∗

s∗∗−(ηϕ)/k with

ηϕ =
∫ [

Φ
(
s∗(ci)−µθ

σθ

)
− Φ

(
s∗∗−µθ
σθ

)]
dG(ci), and DL

M =
∫ [∫ s∗(ci)

θi=s∗∗
θidΦ

(
θi−µθ
σθ

)]
dG(ci), meaning

the aggregate value of assets that are absorbed by outside investors. For given {s∗ (ci)}, both DL
M

and I are decreasing in s∗∗. Thus, the change in the distribution of ci from G
′
to G

′′
, leading to

SL increasing more than DL, requires an increase in s∗∗ (and hence a decrease in DL
M , I, and ηϕ)

to maintain equality in DL−DLM
I = SL when regularity is guaranteed under some parameter values,

considering that I > 1. The simulation exercise confirms that the result in Proposition 3 holds true
for a large parameter space. Figure 7 is an example.

Proof of Lemma 6: To solve the equilibrium analytically, we first obtain Eµθ|θi,shi
(
·| θi, shi

)
=

Eµθ|θi ( ·| θi) and then, by applying it to Eµθ,θi|shi
(
·| shi

)
= Eθi|shi

(
Eµθ|θi,shi

(
·| θi, shi

)∣∣∣ shi ) (the law
of iterated expectations), have the following result: Eµθ,θi|shi

(
·| shi

)
= Eθi|shi

(
Eµθ|θi ( ·| θi)

∣∣ shi ), with
which to calculate (27).

Recall the information (signal) structure: µθ ∼ N(µ̄θ, σ
2
µθ

= τ−1
µθ

), θi = µθ + σθδi with δi ∼
N(0, 1), and shi = θi + σsε

h
i with ε

h
i ∼ N(0, 1). The information structure is a hierarchical one:

µθ → θi → shi , that is, θi is a signal about µθ and s
h
i is a signal about θi. We prove the result

Eµθ,θi|shi
(
·| shi

)
= Eθi|shi

(
Eµθ|θi ( ·| θi)

∣∣ shi ) , (A.8)
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where “·”denotes a function with two variables θi and µθ. The proof has two steps. To simplify
notation, consider a general case of the hierarchical information structure x→ y → s, where y is a
signal about x and s is a signal about y. First, it is easy to prove that Ex|y,s ( ·| y, s) = Ex|y ( ·| y),
that is, in the presence of signal y, signal s is redundant in inferring x. Intuitively, information
{y} is a suffi cient statistic for {y, s} in inferring x. Second, by the law of iterated expectations,
Ex,y|s ( ·| s) = Ey|s

(
Ex|y,s ( ·| y, s)

∣∣ s), which, by substituting the result Ex|y,s ( ·| y, s) = Ex|y ( ·| y)

from the first step, yields Ex,y|s ( ·| s) = Ey|s
(
Ex|y ( ·| y)

∣∣ s). Hence, (A.8) is obtained.
Applying the law of iterated expectations to (27) with using the result in (A.8) yields

Eθi|shi
[
Eθ∗|θi

(
(D(θi)− 1) · 1θi ≥θ∗

∣∣ θi)∣∣ shi = s∗h
]

= Eθi|shi
[
Eθ∗|θi (∆ · 1θi <θ∗ | θi)

∣∣ shi = s∗h
]
,

where θ∗ = θ∗ (s∗, µθ) is given by θ
∗ = θ∗ (s∗;ϕ (s∗, µθ)) defined after (26). This implies that

Eθi|shi
[

((D(θi)− 1) · Pr (θi ≥ θ∗| θi))| shi = s∗h
]

= Eθi|shi
[

(∆ · Pr (θi < θ∗| θi))| shi = s∗h
]
,

that is, ∫ +∞
θi=−∞ ((D(θi)− 1) · Pr (θi ≥ θ∗ (s∗, µθ)| θi)) · f

(
θi|s∗h

)
dθi

=
∫ +∞
θi=−∞ (∆ · Pr (θi < θ∗ (s∗, µθ)| θi)) · f

(
θi|s∗h

)
dθi,

(A.9)

where f
(
θi|s∗h

)
=
√

Γφ

 θi−
(

( 1
τµθ

+ 1
τθ

)−1 1
Γ
µ̄θ+τs

1
Γ
s∗h
)

1/
√

Γ

 with Γ ≡ 1/( 1
τµθ

+ 1
τθ

) + τ s, by considering

θi|s∗h ∼ N
(

( 1
τµθ

+ 1
τθ

)−1 1
Γ µ̄θ + τ s

1
Γs
∗h, 1

Γ

)
.

Plugging in s∗h = s∗, by changing variables to z =
θi−

(
( 1
τµθ

+ 1
τθ

)−1 1
Γ
µ̄θ+τs

1
Γ
s∗
)

1/
√

Γ
, the LHS of (A.9),

denoted by z (s∗;σs), becomes

z (s∗;σs) =

∫ +∞

z=−∞

((
D

(
z/
√

Γ +

(
(

1

τµθ
+

1

τ θ
)−1 1

Γ
µ̄θ + τ s

1

Γ
s∗
))
− 1

)
· Pr (z ≥ z∗| z)

)
φ (z) dz,

where z∗ =
θ∗(s∗,µθ)−

(
( 1
τµθ

+ 1
τθ

)−1 1
Γ
µ̄θ+τs

1
Γ
s∗
)

1/
√

Γ
. Because lim

σs→0
z∗ = −Φ−1

(
s∗−ϕ/k

F

)
with ϕ = Φ

(
s∗−µθ
σθ

)
(the proof is similar to that of Lemma 2), we have lim

σs→0
z∗ ∈

(
−Φ−1

(
s∗

F

)
,−Φ−1

(
s∗−1/k
F

))
and

lim
σs→0

Pr (z ≥ z∗| z) = Pr

z ≥ −Φ−1

s∗ − Φ
(
s∗−µθ
σθ

)
/k

F

∣∣∣∣∣∣ z


=


1

Pr
(
µθ ≥ s∗ − σθΦ−1 (k (s∗ − FΦ (−z)))

∣∣ z)
0

for z ∈
[
−Φ−1

(
s∗−1/k
F

)
,+∞

)
for z ∈

(
−Φ−1

(
s∗

F

)
,−Φ−1

(
s∗−1/k
F

))
for z ∈

(
−∞,−Φ−1

(
s∗

F

)] .

As lim
σs→0

Pr (z ≥ z∗| z) is continuous and increasing in z, for simplicity we write lim
σs→0

Pr (z ≥ z∗| z) =
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Pr
(
µθ ≥ s∗ − σθΦ−1 (k (s∗ − FΦ (−z)))

∣∣ z). Then, taking the limit σs → 0 on z (s∗;σs) yields

lim
σs→0

z (s∗;σs) = (D (s∗)− 1)

∫ +∞

z=−∞
Pr
(
µθ ≥ s∗ − σθΦ−1 (k (s∗ − FΦ (−z)))

∣∣ z) · φ (z) dz

= (D (s∗)− 1)

∫ +∞

z=−∞
Φ

−
{ [

s∗ − σθΦ−1 (k (s∗ − FΦ (−z)))
]

−
(

τµθ
τµθ+τθ

µ̄θ + τθ
τµθ+τθ

s∗
) }

√
1

τµθ+τθ

 · φ (z) dz,

where the second equality follows because µθ|z ∼ N
(

τµθ
τµθ+τθ

µ̄θ + τθ
τµθ+τθ

s∗, 1
τµθ+τθ

)
under σs → 0.

Similarly, we can work out the RHS of (A.9). Overall, equation (29) is obtained. It is easy to verify
the results for the extreme cases of σµθ → 0 and σµθ → +∞ in Lemma 6.

Proof of Proposition 4: Write the function on the LHS of (29) as V (s∗; τµθ). The monotonicity
of V (s∗; τµθ) for the case σµθ → +∞ remains for the case of high enough σµθ , and the monotonicity
of V (s∗; τµθ) for the case σµθ → 0 remains for the case of low enough σµθ > 0.

Proof of Corollary 1: Write the LHS of (29) as function V (s∗, σµθ). Consider the case of
parameter values under which there is a unique equilibrium (e.g., k is high enough; see Proposition
1). The unique equilibrium is stable. Based on the proof of Lemma 2, a stable equilibrium

corresponds to
∂V (s∗,σµθ )

∂s∗ > 0 at the equilibrium solution s∗ to V (s∗, σµθ) = 1.

Then consider the extreme σµθ → 0, so we have the equilibrium in Proposition 1 (only with µθ
replaced by µ̄θ). In this case, clearly, when µ̄θ is high enough, the unique equilibrium s∗ satisfies
s∗ < µ̄θ (see, e.g., the numerical exercise in Figure 5). For such a high enough µ̄θ, we slightly
increase σµθ above 0 and have

∂V (s∗,σµθ )

∂σµθ
=

∫ +∞
−∞

φ
 κ(s∗,σµθ ,z)√√√√ (σµθ /σθ)

2

1+(σµθ /σθ)
2


 2σµθ

/σ2
θ[

1+(σµθ /σθ)
2
]2
(
s∗−µ̄θ
σθ

)
√√√√ (σµθ /σθ)

2

1+(σµθ /σθ)
2

φ (z) dz

 D(s∗)−1+∆
∆

+

∫ +∞
−∞

φ
 κ(s∗,σµθ ,z)√√√√ (σµθ /σθ)

2

1+(σµθ /σθ)
2

(−1
2

)
 κ(s∗,σµθ ,z)(

(σµθ /σθ)
2

1+(σµθ /σθ)
2

) 3
2


∂

(
(σµθ /σθ)

2

1+(σµθ /σθ)
2

)
∂σµθ

φ (z) dz

 D(s∗)−1+∆
∆ ,

where κ
(
s∗, σµθ , z

)
≡ Φ−1 (k (s∗ − FΦ (−z))) − 1

1+(σµθ/σθ)
2

(
s∗−µ̄θ
σθ

)
. The first term is nega-

tive and the second term approaches zero when σµθ → 0.30 Hence, under the suffi cient condi-

tion that σµθ is close enough to 0,
∂V (s∗,σµθ )

∂σµθ
< 0. By the implicit function theorem, ∂s∗

∂σµθ
=

−∂V (s∗,σµθ )

∂σµθ
/
∂V (s∗,σµθ )

∂s∗ > 0.

The following is to provide further insight on how aggregate uncertainty affects the amplification
mechanism. Denote by s∗i the threshold used by creditors of bank i and by s

∗ the threshold used by

30The second term under σµθ → 0 can be simplified as lim
σ→0

∫ +∞
−∞ φ

(
z
σ

)
zφ (z + a) dz = 0.
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creditors of all other banks. Then, the equilibrium in Lemma 6 is characterized by the fixed-point
problem between s∗i and s

∗, given by the two equations:
∫ +∞

z=−∞
Φ

−
{ [

s∗ − σθΦ−1 (k (s∗i − FΦ (−z)))
]

−
(

τµθ
τµθ+τθ

µ̄θ + τθ
τµθ+τθ

s∗i

) }
√

1
τµθ+τθ

φ (z) dz


D(s∗i )− 1 + ∆

∆
= 1 (A.10)

and s∗i = s∗. In fact, to obtain (A.10), the proof of Lemma 6 needs to be revised slightly. That

is, (25) is changed to θ∗−ϕ/k
F = Φ

(
s∗i−θ

∗

σs

)
with lim

σs→0
ϕ (s∗, µθ) = Φ

(
s∗−µθ
σθ

)
, which defines θ∗ =

θ∗ (s∗i ;ϕ (s∗, µθ)). Then, lim
σs→0

z∗ = −Φ−1
(
s∗i−ϕ/k

F

)
with ϕ = Φ

(
s∗−µθ
σθ

)
and lim

σs→0
Pr (z ≥ z∗| z) =

Pr

(
z ≥ −Φ−1

(
s∗i−Φ

(
s∗−µθ
σθ

)
/k

F

)∣∣∣∣∣ z
)

= Pr
(
µθ ≥ s∗ − σθΦ−1 (k (s∗i − FΦ (−z)))

∣∣ z), where µθ|z ∼
N
(

τµθ
τµθ+τθ

µ̄θ + τθ
τµθ+τθ

s∗i ,
1

τµθ+τθ

)
under σs → 0. So (A.10) is obtained.

Write the LHS of (A.10) as function V (s∗, s∗i , σµθ). It is easy to calculate and verify that
∂V
∂s∗ < 0 and ∂V

∂s∗i
> 0, and also ∂V

∂τµθ
> 0 when s∗i < µ̄θ under the suffi cient condition that σµθ is

close enough to 0. The solution with respect to s∗i to equation V (s∗, s∗i , σµθ) = 1 gives the (best

response) function s∗i = r
(
s∗;σµθ

)
. By the implicit function theorem, ∂s

∗
i

∂s∗ > 0 and ∂s∗i
∂σµθ

> 0. Also,

the slope ∂s∗i
∂s∗ is lower for a higher σµθ at some relevant points (candidate equilibria) (s∗, s∗i = s∗).

Proof of Corollary 2: We make an additional assumption: n is decreasing in ϕ. For simplicity,
assume n = ϕ−β with β > 0. In this case, based on Lemma 1, k = ϕ−β · k0, where k0 ≡ 1/

(
γσ2

e

)
.

Based on the proof of Lemma 6, the equilibrium equation (29) is revised as
∫ +∞

z=−∞
Φ




(

τµθ
τµθ+τθ

µ̄θ + τθ
τµθ+τθ

s∗
)

−
[
s∗ − σθΦ−1

(
[k0 (s∗ − FΦ (−z))]

1
1+β

)] √
1

τµθ+τθ

φ (z) dz


D(s∗)− 1 + ∆

∆
= 1.

Write the first term on the LHS as Ψ
(
z, σµθ

)
≡
∫ +∞
z=−∞Φ

(
π(z,σµθ)√

1
τµθ

+τθ

)
φ (z) dz, where π

(
z, σµθ

)
≡(

τµθ
τµθ+τθ

µ̄θ + τθ
τµθ+τθ

s∗
)
−
[
s∗ − σθΦ−1

(
[k0 (s∗ − FΦ (−z))]

1
1+β

)]
. It follows that

∂Ψ(z,σµθ)
∂σµθ

=

∫ +∞
−∞

φ( π(z,σµθ)√
1

τµθ
+τθ

) ∂π(z,σµθ)
∂σµθ√

1
τµθ

+τθ

φ (z) dz +
∫ +∞
z=−∞ φ

(
π(z,σµθ)√

1
τµθ

+τθ

)
(−1)

π(z,σµθ)
1

τµθ
+τθ

∂
√

1
τµθ

+τθ

∂σµθ
φ (z) dz.

The first term is the mean channel and the second term is the variance channel. Under the suffi cient
condition that µ̄θ − s∗ is close to 0, the first term is small. We focus on the second term and show
that the second term is more likely to be negative when β is higher. First, we show that π

(
z, σµθ

)
is concave in z in a larger range of z when β is higher. In fact,
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∂π(z,σµθ)
∂z = σθΦ

−1′
(

[k0 (s∗ − FΦ (−z))]
1

1+β

)
1

1+β [k0 (s∗ − FΦ (−z))]
1

1+β
−1

(k0Fφ (−z)) > 0

∂π2
(
z, σµθ

)
∂z2

= σθΦ
−1
′′ (

[k0 (s∗ − FΦ (−z))]
1

1+β

)[ 1

1 + β
[k0 (s∗ − FΦ (−z))]

1
1+β
−1

(k0Fφ (−z))
]2

+σθΦ
−1′
(

[k0 (s∗ − FΦ (−z))]
1

1+β

) 1
1+β

(
1

1+β − 1
)

[k0 (s∗ − FΦ (−z))]
1

1+β
−2 · (k0Fφ (−z))2

+ 1
1+β [k0 (s∗ − FΦ (−z))]

1
1+β
−1 ·

(
−k0Fφ

′
(−z)

)  ,
where 1

1+β

(
1

1+β − 1
)
< 0. Second, consider the general case

∫ +∞
z=−∞ φ

(
π(z)
σ

)
π (z) dz, where π (z) is

increasing and concave, with the range of π being (−∞,+∞). It follows that
∫ +∞
z=−∞ φ

(
π(z)
σ

)
π (z) dz =∫ +∞

y=−∞ φ
( y
σ

)
ydπ−1 (y) > 0 under the suffi cient condition that σ is low enough, by considering

dπ−1 (y) /dy > 0 and d2π−1 (y) /dy2 > 0. Third, when 1
τµθ+τθ

is small enough, the sign of the sec-

ond term in
∂Ψ(z,σµθ)
∂σµθ

is determined by the sign of
∫ +∞
z=−∞ φ

(
π(z,σµθ)√

1
τµθ

+τθ

)
(−1)

π(z,σµθ)
1

τµθ
+τθ

∂
√

1
τµθ

+τθ

∂σµθ
dz,

so the sign is more likely to be negative when β is higher.

Proof of Corollary 3: Based on equation (29), for a given σµθ , when σθ is small enough or large
enough, there exists a unique equilibrium; when σθ is in an intermediate range, multiple equilibria
can exist. Hence, fixing σµθ and letting σθ start from σθ = 0+ and increase, there exists a critical
value σθ = σ∗θ below which the equilibrium is unique. So around

(
σµθ , σ

∗
θ

)
, we can find the case such

that when both σµθ and σθ increase slightly and there is a tiny decrease for σµθ/σθ, the equilibrium
switches from uniqueness to multiplicity.

Proof of Lemmas 7 and 8: The proof is straightforward and hence omitted.

Proof of Proposition 5: The expected utility for the outside investor sector is given by nE
[
U(W j)| {li}

]
=

−n exp
(
−γ
∫
qi(θi − li)di+ 1

2γ
2σ2

e

(∫
qidi

)2)
= −n exp

(
−γ ((αηϕ) /k) ·

(αηϕ
n

)
+ 1

2γ
2σ2

e

(αηϕ
n

)2)
=

−n exp
(
−1

2 (γ/k) 1
n (αηϕ)2

)
, by considering θi − li = (αηϕ) /k, n

∫
qidi = αηϕ and k ≡ n/

(
γσ2

e

)
.

Also, E (li (θi) |θi ∈ (s∗∗, s∗)) > li (θi = s∗∗) = s∗∗

I > E (θi |θi ≤ s∗∗ ) /I. And Y (Q1, Q2) = (µθ + c)−
(αηϕ)2 /k. Due to the complexity of the general-equilibrium nature of (35) with many endogenous
variables, we show the existence of cases i) to iii) under the same set of parameter values. The
simulation exercise confirms the existence for a large parameter space. The tradeoff between Q1

and Q2 in reducing ineffi cient fire sales is discussed after Figure 11.

Function Y (Q1, Q2) is continuous in Q1 ∈ (0, Q) and in Q2 ∈ (0, Q) for a low Q. Hence, the
optimization problem (35) has solutions in a closed set Q1 ∈ [δ,Q− δ], where δ is an arbitrarily
small positive number. Note that ∂Y

∂Q1
is decreasing in Q1 and ∂Y

∂Q2
is relatively less sensitive to Q2.

When (µθ, k) is in the region such that ϕ = Φ
(
s∗−µθ
σθ

)
is high enough, ∂Y/∂Q1

∂Y/∂Q2

∣∣∣
(Q1,Q2)=(Q1,Q−Q1)

> 1 at any Q1 ∈ [0, Q], so the optimal allocation is (Q1, Q2) = (Q, 0). When (µθ, k) is in the region

such that ϕ = Φ
(
s∗−µθ
σθ

)
is low enough, ∂Y/∂Q1

∂Y/∂Q2

∣∣∣
(Q1,Q2)=(Q1,Q−Q1)

< 1 at any Q1 ∈ [0, Q], so the

optimal allocation is (Q1, Q2) = (0, Q). When (µθ, k) is in the region such that ϕ = Φ
(
s∗−µθ
σθ

)
is

in an intermediate range, there exists Q1 ∈ (0, Q) such that ∂Y/∂Q1

∂Y/∂Q2

∣∣∣
(Q1,Q2)=(Q1,Q−Q1)

= 1 and the
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optimal Q1 is typically unique.

A minor complication is that when (µθ, k) is in the region such that ϕ = Φ
(
s∗−µθ
σθ

)
is low enough

(case ii), function Y (Q1, Q2) exhibits a discontinuity at Q2 = 0 due to the normal distribution of
θi ∼ N(µθ, σ

2
θ); in fact, based on (15), when c = 0, s∗∗ = −∞; when c = 0+, s∗∗ > 0. However,

because around this discontinuity Y (Q1, Q2 = 0) < Y (Q1, Q2 = 0+) is true, the optimum Q2 = Q
in case ii) will not change after taking into account this local discontinuity.

Proof of Corollary 4: Based on Propositions 3 and 5, the conclusion is easy to obtain.

B Additional Results

B.1 Equilibrium at t = 0 with Endogenous Liquid Asset Holdings

In this subsection, we endogenize liquid asset holdings, study the optimal level of liquidity holdings
for banks, and address the question of whether individual banks’choice is socially optimal. Our
paper is the first to study this question in general equilibrium in a global-games framework.31

We study the ex ante problem at t = 0 of the baseline model. Specifically, no longer assume
that the asset side of the balance sheet of a bank is exogenously given. Rather, a bank makes a
portfolio choice (c, 1− c) at t = 0, where c denotes the amount of liquid asset holdings (“cash”)
and 1− c denotes the units of risky assets. The liability side is still given by (F, 1− F ).

With the above setup, our model endogenizes c (as well as R). We study the decentralized
equilibrium for individual banks and the social planner’s constrained problem, in order.32

Decentralized Competitive Equilibrium. The decentralized competitive equilibrium at
t = 0 consists of the following two elements:

(i) Taking the fire-sale price function l̂ (·) and the interbank return Ĩ at t = 1 as given, an
individual bank i chooses its optimal ci, subject to its creditors’participation.

(ii) Given that all banks choose the same c in symmetric equilibrium (i.e., ci = c for i ∈ [0, 1]),
the market equilibrium determines l̂ (·) and Ĩ.

In other words, the competitive equilibrium is characterized by a fixed-point problem between

c and
(
l̂ (·) , Ĩ

)
. We proceed to find the competitive equilibrium in two steps, corresponding to

elements (i) and (ii). To reduce notational clutter and without causing confusion, we drop subscript
i for the bank index in notations unless otherwise specified.

31Early works not using the global-games approach either assume that banks face exogenous idiosyncratic liquidity
shocks and do not model the run probability (e.g., Bhattacharya and Gale (1987), Allen and Gale (2000)) or they
assume corporate liquidity shocks instead of studying run risk (e.g., Kara and Ozsoy (2020)). A few recent works that
use the global-games approach are partial-equilibrium models; for example, Vives (2014a) and Carletti, Goldstein,
and Leonello (2020) treat all banks in the system as having the same fundamentals and Ahnert (2016) studies two
banks without considering the welfare of the asset buyer sector and assumes an exogenous debt contract. Liu (2016)
studies heterogeneous banks but focuses only on the planner’s choice.
32To examine the ex ante problem, for simplicity we can choose parameter values (i.e., some (µθ, k)) that guarantee

a unique equilibrium ex post at t = 1 (see Proposition 1). In this case, emergence of multiple equilibria ex post
can be interpreted as the outcome of an “unexpected” shock (to µθ or to k) as in Kiyotaki and Moore (1997) and
Allen and Gale (2000). Alternatively, following the literature (e.g., Jeanne and Korinek (2018)), in the case of the
existence of multiple equilibria ex post, agents have a view ex ante on which equilibrium will be selected (e.g., the
least-effi cient equilibrium under the most pessimistic views with Knightian uncertainty in the spirit of Caballero and
Krishnamurthy (2008) or the most-effi cient equilibrium by anticipating the intervention of the government).
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Step 1: Find an individual bank’s optimal choice of c for a given
(
l̂ (·) , Ĩ

)
.

If an individual bank i chooses (c, 1− c), what are its creditors’ rollover strategy and par-
ticipation condition? Given that the creditors anticipate l̂ (·) and Ĩ, the rollover threshold s∗ is
determined by (18). The participation condition (IR) for a creditor is given by∫ s∗

θi=−∞

(1− c) l̂i + c

F
· dΦ

(
θi − µθ
σθ

)
︸ ︷︷ ︸

in the case of bank failing at t=1

+

∫ +∞

θi=s∗
D̂(θi;R) · dΦ

(
θi − µθ
σθ

)
︸ ︷︷ ︸
in the case of bank surviving to t=2

= R0, (B.1)

where the exogenous R0 is the reserve return of lending for bank creditors. In (B.1), recalling Figure
3, two of the payoff cases are on the equilibrium path, while the other two are off the equilibrium

path. Equations (18) and (B.1) jointly give the mapping
(
c,
(
l̂ (·) , Ĩ

))
→ (s∗, R).

An individual bank’s optimal choice of c is therefore given by the program

c∗ = arg max
c

∫ s∗

θi=−∞

[
(1− c) l̂i + c

]
· dΦ

(
θi − µθ
σθ

)
︸ ︷︷ ︸

in the case of bank failing at t=1

+

∫ +∞

θi=s∗
[(1− c) θi + cI] · dΦ

(
θi − µθ
σθ

)
︸ ︷︷ ︸

in the case of bank surviving to t=2

s.t. (16), (17), (18), and (B.1). (B.2)

The objective function in (B.2) is to maximize the bank’s equity value. This is equivalent to
maximizing the total value of the bank (i.e., its debt value plus equity value), because the creditors
of a bank, in total, claim a constant residual value, FR0.33 As for the constraints, the bankowner
anticipates the liquidation price rule (16) and the interbank return (17) and takes into account
creditors’response (18) and (B.1).

Denote by Y (c) the objective function in program (B.2). The first-order condition is

dY

dc
=
∂Y

∂s∗
∂s∗

∂c
+
∂Y

∂c
= 0. (B.3)

The tradeoff is as follows. Holding more cash reduces the probability of a run ex post and thus
the chance of forced fire sales, which is the gain. On the other hand, holding more cash wastes the
valuable investment opportunity as the risky asset has a higher expected return, which is the loss.

Step 2 : Find the equilibrium
(
l̂ (·) , Ĩ

)
for a given c chosen by all other banks.

Suppose all other banks choose c. The market equilibrium then determines (s∗, (s∗∗, {li} , I) , ϕ,R),

which in turn determines
(
l̂ (·) , Ĩ

)
, that is,

(13) to (15)

(18)

(B.1)

(12)

(asset prices)

(creditor run)

(IR of creditors))

(aggregate liquidation)

 . (B.4)

33To focus solely on the friction we are interested in, we assume that a bank’s choice (c, 1− c) is observable by or
contractible with its creditors. This means that R is contingent on c, so the bankowner fully internalizes the impact
of his choice of c on the debt value and thus maximizes the total value of the bank.
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Note that (B.4) is essentially Proposition 2 together with the participation condition (B.1).

By symmetric equilibrium across banks, we have

c∗ = c. (B.5)

Constrained Second-Best Equilibrium. In the constrained second-best equilibrium,
the social planner chooses (c, 1− c) on behalf of individual banks. She takes the fire-sale price
function l̂ (·) and the interbank return Ĩ as endogenous and recognizes that the choice of (c, 1− c)
endogenously impacts

(
l̂ (·) , Ĩ

)
. Her optimal choice of c is given by

c∗SB = arg max
c

[ ∫ s∗
θi=−∞

[
(1− c) l̂i + c

]
· dΦ

(
θi−µθ
σθ

)
+
∫ +∞
θi=s∗

[(1− c) θi + cI] · dΦ
(
θi−µθ
σθ

)
+E

[
U(W j)| {li}

] ]

s.t. (13) to (15), (18), (B.1), and (12), (B.6)

where E
[
U(W j)| {li}

]
= − exp

(
−1

2γ (ηϕ)2 /k
)
≡ Yo is the expected utility for the outside investor

sector.34 In program (B.6), the objective function is to maximize the aggregate value of the entire
banking sector and the outside investor sector in general equilibrium.35 The former includes the
first term (the failing banks at t = 1) and the second term (the surviving banks at t = 2), and the
latter corresponds to the third term in the objective function. Program (B.6) contains constraints
(13) to (15) as well as (12), which endogenously determine the asset prices, while program (B.2)
does not. The constraints of program (B.6) give the mapping c→ (s∗, (s∗∗, {li} , I) , ϕ,R).

Denote by Ys (c) the objective function in program (B.6). Clearly, Ys = Y + Yo, where Y ,
defined before (B.3), is the objective function in program (B.2). The first-order condition is

dYs
dc

=
∂Y

∂s∗
ds∗

dc
+
∂Y

∂c
+

(
∂Y

∂ (ηϕ)

d (ηϕ)

dc
+
∂Y

∂I

dI

dc

)
+

∂Yo
∂ (ηϕ)

d (ηϕ)

dc
= 0, (B.7)

where the first two terms have counterparts in (B.3), the third and fourth terms are the indirect

effects through endogenous prices
(
l̂ (·) , Ĩ

)
, and the last term is the effect on the expected utility

of the outside investor sector.

We see a key difference between the two first-order conditions (B.3) and (B.7). Namely, ∂s
∗

∂c in
(B.3) is determined by the constraints of program (B.2), while ds∗

dc in (B.7) is determined by those
of program (B.6). To grasp some intuition, let us look at one constraint – equation (18) for the

creditor-run equilibrium, rewritten as c+(1−c)·l(s∗)
F · D̂(s∗)−1+∆

∆ = 1, where l (s∗) = s∗− (ηϕ) /k. For
individual banks, s∗ is a function of c while (ηϕ) /k is exogenous, which gives ∂s∗

∂c . In contrast, for
the social planner, discount (ηϕ) /k is endogenous and is a function of c and hence a change in c
has an additional indirect effect on s∗ through ηϕ, and the total effect corresponds to ds∗

dc .

Under certain conditions, c∗ < c∗SB. That is, individual banks’optimal level of liquid asset
holdings in the decentralized equilibrium is lower than the constrained social optimum.

Intuitively, individual banks do not internalize that a higher level of liquidity holdings of their
own has a positive effect on other banks – it reduces the run probability of their own and thus low-

34For simplicity and without loss of generality, we normalize n = 1 (the mass of outside investors) in this subsection.
35Mas-Colell, Whinston, and Green (1995) give a definition for a welfare function of an economy in which different

types of agents can have different preference functions. Weights for different types of agents can be different.
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ers the pressure on the fire-sale price discount in the asset market, thereby making other banks less
likely to suffer runs and consequently reducing ineffi cient fire sales in the system. More concretely,
when asset prices enter the constraints of the optimization problem of private agents, pecuniary
externality that operates through asset prices can arise (e.g., Dávila and Korinek (2018), Brun-
nermeier, Eisenbach, and Sannikov (2013)). Specifically, in our model, a wedge exists between the
two first-order conditions (B.3) and (B.7), due to two sources of externality. First, as discussed
earlier, ∂s

∗

∂c in (B.3) is different from
ds∗

dc in (B.7), corresponding to “collateral externality”in Dávila
and Korinek (2018). Second, sellers (banks) are risk-neutral while buyers (outside investors) are
risk-averse in our model. The difference in MRS causes “distributive externality” as in Dávila
and Korinek (2018). Overall, under the suffi cient condition that the effect of the first externality
dominates, it follows that dYs

dc

∣∣
c=c∗

> ∂Y
∂c

∣∣
c=c∗

= 0, which implies c∗ < c∗SB.

Finally, our model can also address two other questions. First, if the government cannot commit
to avoiding ex post interventions in the asset market, what happens? In this case, individual banks
would hold less liquidity ex ante in the decentralized equilibrium. In fact, equation (B.4) will be
adjusted as in (34). The government’s liquidity support ex post will absorb a fraction of sold assets
in the secondary asset market. The liquidation prices will hence be raised and the run threshold
s∗ will decrease, and consequently individual banks have incentives to hold less liquidity ex ante.
Second, it is easy to extend the study in this section to the case with aggregate uncertainty. In
fact, this involves two changes. The participation condition in (B.1) becomes∫ +∞

µθ=−∞

∫ s∗

θi=−∞

(1− c) l̂i (µθ) + c

F
· dΦ

(
θi − µθ
σθ

)
︸ ︷︷ ︸

in the case of bank failing at t=1

+

∫ +∞

θi=s∗
D̂(θi;R) · dΦ

(
θi − µθ
σθ

)
︸ ︷︷ ︸
in the case of bank surviving to t=2

dΦ

(
µθ − µ̄θ
σµθ

)
= R0

and the ex post creditor run-asset market equilibrium at t = 1 becomes (29).

B.2 Alternative Creditor-Run Payoff Structure

First, we show that our model results are robust under the full payoff structure in Figure B1 below.

Total calling proportion λ ∈ [0, liF )

(bank survives)

Total calling proportion λ ∈ [ liF , 1]

(bank fails)

Hold min

[
R,

(
1−Fλ

li

)
(1−λ)F vi

]
li
F −∆

Call 1 li
F

Figure B1. Full creditor-run payoff structure.

If λ ∈ [0, liF ), the bank needs to liquidate Fλ
li
units of its assets to raise cash to pay its Fλ calling

creditors. Thus, at t = 2, 1 − Fλ
li
units of assets remain. Since the number of staying creditors at

t = 2 is (1− λ)F , these creditors’total notional claim is (1− λ)FR. Hence, a staying creditor

will have a realized payoff
min

[
(1−λ)FR,

(
1−Fλ

li

)
vi

]
(1−λ)F = min

[
R,

1−Fλ
li

(1−λ)F vi

]
at t = 2, as in Diamond and

Dybvig (1983). Notice that by setting λ = 0, the payoffmin

[
R,

1−Fλ
li

(1−λ)F vi

]
becomes min

[
R, viF

]
, so
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Figure B1 becomes exactly the same as Figure 3.

Under the payoff structure in Figure B1, we prove that (7) is replaced by

∫ s∗−ϕ/k
F

0

E
min

R,
(

1− Fλ
s∗−ϕ/k

)
(1− λ)F

vi

 |θi = s∗

− 1

 dλ =

(
1− s∗ − ϕ/k

F

)
∆, (B.8)

where vi ∼ N(θi, σ
2
e). Notice that if we set λ = 0 inside the integral, (B.8) becomes identical to (7).

We show that under a suffi cient condition the following key property of (7) in Lemma 3 preserves
for (B.8): ∂s

∗

∂ϕ > 0. Therefore, the results of the model change only quantitatively, not qualitatively.

Proof: Under the alternative payoff structure in Figure B1, (5) is replaced by

∫ +∞
θi=θ

∗

E
min

R,
(

1−Fλ(θi;s
∗)

li

)
(1−λ(θi;s∗))F

vi

 |θi
− 1

 dΦ

(
θi−

(
τθ

τθ+τs
µθ+ τs

τθ+τs
s∗
)

√
1

τθ+τs

)

=
∫ θi=θ∗
θi=−∞∆dΦ

(
θi−

(
τθ

τθ+τs
µθ+ τs

τθ+τs
s∗
)

√
1

τθ+τs

)
,

(B.9)

where li = θi−ϕ/k, λ (θi; s
∗) = Φ

(
s∗−θi
σs

)
, vi ∼ N(θi, σ

2
e) and θi|s∗ ∼ N( τθ

τθ+τs
µθ+ τs

τθ+τs
s∗, 1

τθ+τs
).

Combining (B.9) and (4) into one equation and using the same method as that in the proof of
Lemma 2 of changing variables of the integral, we can transform the combined equation for the
limiting case of σs → 0 into (B.8).

Next, we prove that (B.8) retains the property ∂s∗

∂ϕ < 0 of (7). Write (B.8) as Λ (s∗, ϕ) ≡∫ s∗−ϕ/k
F

0

[
E

(
min

[
R,

(
1− Fλ

s∗−ϕ/k

)
(1−λ)F vi

]
|θi = s∗

)
− 1

]
dλ −

(
1− s∗−ϕ/k

F

)
∆ = 0. This implies ∂Λ

∂s∗ =

∫ s∗−ϕ/k
F

0


∂E

min

R,
(

1− Fλ
s∗−ϕ/k

)
(1−λ)F

vi

|θi


∂θi

∣∣∣∣∣∣∣∣∣
θi=s∗

 dλ+
∫ s∗−ϕ/k

F
0

E

∂min

R,
(

1− Fλ
s∗−ϕ/k

)
(1−λ)F

vi


∂s∗ |θi = s∗


 dλ+

(
− 1
F

)
+ 1

F ∆, where
1− Fλ

s∗−ϕ/k
(1−λ)F ∈

[
0, 1

F

]
for λ ∈

[
0, s

∗−ϕ/k
F

]
. The first term is positive because the

distribution of

(
1− Fλ

s∗−ϕ/k

)
(1−λ)F vi under a higher θi has first order stochastic dominance over that un-

der a lower θi. In the second term,
∂

(
1− Fλ

s∗−ϕ/k

)
(1−λ)F

∂s∗ > 0 and, therefore, the second term is positive
under a suffi cient condition that σe is small enough which ensures Pr (vi < 0|θi = s∗) is small
enough. The sum of the third term and the fourth term approaches 0 when ∆ → 1. Overall,
∂Λ
∂s∗ > 0 under a suffi cient condition that σe is small enough and ∆ is close enough to 1. Similarly,

∂Λ
∂ϕ =

∫ s∗−ϕ/k
F

0

E

∂min

R,
(

1− Fλ
s∗−ϕ/k

)
(1−λ)F

vi


∂ϕ |θi = s∗


 dλ+ 1/k

F +
(
−1/k

F ∆
)
and ∂Λ

∂ϕ < 0 under a suffi -

cient condition that σe is small enough and ∆ is close enough to 1. Hence, by the implicit function
theorem, it follows that ∂s∗

∂ϕ = − ∂Λ/∂ϕ
∂Λ/∂s∗ > 0. Q.E.D.

Second, we show that our model is robust under the alternative payoff structure of Rochet and
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Vives (2004). As in Rochet and Vives (2004), each creditor of a bank is an institutional investor
(a fund), run by its fund manager. A fund manager has the following compensation scheme. If the
fund manager calls his fund’s investment at t = 1, his payoff is a constant w0, or the face value 1
multiplied by proportion w0. If, instead, the fund manager holds the investment at t = 1, he will
obtain compensation w conditional on his fund’s investment not defaulting (i.e., the investment
return is no less than R), where w > w0. Hence, the payoff structure is as given in Figure B2.

Total calling proportion λ ∈ [0, liF )

(bank survives)

Total calling proportion λ ∈ [ liF , 1]

(bank fails)

Hold w · Φ
((

1−F
li
λ
)
θi−(1−λ)FR(

1−F
li
λ
)
σe

)
0

Call w0 w0

Figure B2. Alternative creditor-run payoff structure.

If λ ∈ [ liF , 1], a creditor run occurs and the bank fails at t = 1; its staying creditors get
nothing and thus their fund manager’s compensation is 0 because of the default. If λ ∈ [0, liF ), the
bank must liquidate Fλ

li
units of its assets to raise cash to pay its Fλ calling creditors. Thus, at

t = 2, 1 − Fλ
li
units of assets will remain, the payoff distribution of which, conditional on θi, is(

1− Fλ
li

)
vi ∼ N

((
1− Fλ

li

)
θi,
(

1− Fλ
li

)2
σ2
e

)
. Since the number of staying creditors at t = 2 is

(1− λ)F , these creditors’total notional claim is (1− λ)FR. Hence, the probability that the bank

will not default to these creditors at t = 2 conditional on θi is Φ

((
1−Fλ

li

)
θi−(1−λ)FR(

1−Fλ
li

)
σe

)
.

Under the payoffstructure in Figure B2, (7) is instead replaced by
∫ s∗−ϕ/k

F
0 Φ

((
1− F

s∗−ϕ/kλ
)
s∗−(1−λ)FR(

1− F
s∗−ϕ/kλ

)
σe

)
dλ =

w0
w . It is easy to prove that the following key property of (7) in Lemma 3 remains:

∂s∗

∂ϕ > 0. More-
over, Proposition 1 still holds, and thus all the results carry through.

Similar to Figure 3, we can follow Morris and Shin (2009) to simplify the payoff structure of
the creditor-run game in Rochet and Vives (2004), which gives Figure B3.

Total calling proportion λ ∈ [0, liF )

(bank survives)

Total calling proportion λ ∈ [ liF , 1]

(bank fails)

Hold w · Φ
(
θi−FR
σe

)
0

Call w0 w0

Figure B3. Simplified alternative creditor-run payoff structure.

Under Figure B3, (7) is replaced by li(θi=s
∗)

F · wΦ
(
s∗−FR
σe

)
= w0, where li (θi = s∗) = s∗ − ϕ/k

by (2). It is easy to show that the property ∂s∗

∂ϕ > 0 is preserved.
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