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Abstract

We model the interplay between trade in the interbank market and creditor runs on �nancial

institutions. We show that the feedback between them can amplify a small shock into �interbank

market freezing�with �liquidity evaporating�. Credit crunches of the interbank market drive

up the interbank rate. For an individual institution, a higher interbank rate � meaning a

higher funding cost � results in more severe coordination problems among creditors in debt

rollover decisions. Creditors thus behave more conservatively and run more often. Facing an

increased chance of creditor runs, institutions demand more and supply less liquidity, tightening

the interbank market. Our model demonstrates that banking crises arise from a shrinking of

the pool of aggregate liquidity.
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1 Introduction

A salient feature of the recent �nancial crisis of 2007-2009 was systemic creditor runs on �nancial

institutions. Short-term creditors of the institutions rushed for the exit and liquidity evaporated

abruptly. The modern-day bank runs that occurred in the shadow banks illustrated vividly how

liquidity could suddenly dry up.1 Covitz et al. (2013) document that the runs on asset-backed

commercial paper (ABCP) programs led to outstanding ABCP falling by $400 billion (one-third of

the existing amount) during the second half of 2007. Duygan-Bump et al. (2013) document that

the runs on prime money market funds (MMFs) caused asset value to shrink from $1300 billion

to $900 billion within one week after the collapse of Lehman Brothers. Notably, systemic creditor

runs coincided with the �freezing�of the interbank market and were strongly correlated with the

macroeconomic fundamental shocks � the ABX index (Gorton and Metrick (2011) and Covitz et

al. (2013)). The LIBOR-OIS spread (a primary measure of interbank lending rates) increased to

over 300 bps at the peak of the crisis, in contrast to the pre-crisis level of less than 10 bps.2

This paper develops a model to demonstrate the interdependence of trade in the interbank

market and creditor runs on �nancial institutions. Our model explains the joint occurence of

interbank market freezes and systemic creditor runs.

The credit risk of debt in a �nancial institution can be decomposed into two parts: fundamen-

tal (insolvency) risk and coordination (illiquidity) risk. In our framework, the illiquidity risk is

endogenous, originating in the insolvency risk. When the fundamental (insolvency) risk increases,

the coordination problem among short-term creditors becomes more severe and thus they are more

likely to run on the institution, so the illiquidity risk also increases. In our model, the role of the

interbank market is to allow banks in the �nancial system with idiosyncratic fundamental shocks to

trade short-term funds to solve their illiquidity problem and thus mitigate potential creditor runs.

We develop a three-date model. At the initial date, each bank in the system makes its portfo-

lio allocation: cash holdings and investment in a long-term illiquid asset (with a higher expected

return). At the intermediate date, banks realize their idiosyncratic fundamental shocks (asset qual-

ity). A higher asset quality of a bank means that the bank�s long-term asset will realize the high

1Runs on banks such as Northern Rock, Bear Stearns, Lehman Brothers, and others have been well recognized.
2Data are from the British Bankers�Association and Bloomberg.
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cash �ow with a greater probability at the �nal date. Creditors of a bank receive imperfect infor-

mation about the asset quality of their bank at the intermediate date, based on which make their

rollover decisions. Creditors face a coordination problem among themselves in rollover decisions.

We �rst solve the equilibrium at the intermediate date, that is, the equilibrium of a creditor-

run game. In the benchmark case without an interbank market, we show that the probability of

a creditor run for a bank is a decreasing function of the bank�s asset quality and cash holdings.

Intuitively, a higher asset quality means a lower insolvency risk of the bank at the �nal date, and

thus creditors are more willing to roll over their lending. A higher cash holding means that the

bank is more liquid and can withstand a larger proportion of creditors�interim withdrawals, so the

coordination risk (illiquidity risk) of the debt is lower. Therefore, cash holdings and asset quality

are substitutes in preventing a creditor run. In other words, a stronger bank, with fewer creditors

calling loans in equilibrium, needs less cash to prevent a creditor run. This gives rise to the role

of an interbank market, where banks facing heterogeneous fundamental shocks borrow and lend

short-term funds among themselves. Earlier works such as Bhattacharya and Gale (1987) and

Allen and Gale (2000) model the interbank market instead based on the assumption that banks

face exogenous idiosyncratic liquidity shocks.

In the case with an interbank market, we show that the probability of a creditor run for an

individual bank depends on the bank�s asset quality as well as the funding condition (i.e., borrowing

rate) in the interbank market. The funding condition a¤ects how much liquidity the bank can raise

from the interbank market and thus how much total liquidity the bank can access. The funding

condition of the interbank market, in turn, depends on other banks�status and their willingness

to lend. Therefore, the equilibrium in the system, which we call the creditor run-interbank market

equilibrium, has two interacting components: the creditor-run equilibrium within a bank and the

interbank-market equilibrium across banks. The interbank-market equilibrium determines the

interbank rate, which a¤ects creditors�rollover decision in an individual bank. Conversely, creditors�

rollover decision a¤ects the status of each bank and hence the equilibrium of the interbank market.

Then, we solve the equilibrium at the initial date; in doing so the cash holdings of banks and the

notional (promised) interest rate to creditors are endogenized. We consider both the constrained

second-best equilibrium and the competitive equilibrium.
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Finally, we study our model under an aggregate shock, which has implications for the occurrence

of a crisis and ampli�cation. A crisis occurs when an adverse aggregate shock to asset quality hits

the economy. Concretely, when some banks (perhaps high-quality banks) realize worse asset quality

than they expect, they need more liquidity to mitigate their illiquidity problems. This decreases

the supply of short-term funds in the interbank market, driving up the interbank rate. As the

interbank rate increases, ceteris paribus, an individual bank can raise less liquidity in the interbank

market and thus becomes less capable of meeting its creditors�early withdrawals. This triggers

higher coordination risk among creditors in a rollover, who then run more often. All banks face such

a problem (to di¤erent extents) because of information asymmetry of creditors about their bank�s

fundamentals (asset quality). In anticipation of this, banks demand more and supply less liquidity

in the interbank market to protect themselves, leading to an even higher interbank rate. In short,

an adverse aggregate shock triggers a reinforcing spiral of a rise in the interbank rate, a more severe

coordination problem among creditors in debt rollover decisions, and a greater demand for liquidity

of banks. Moreover, the adverse aggregate shock can trigger multiple equilibria under self-ful�lling

expectations. The ampli�cations result in systemic creditor runs occurring simultaneously with

interbank market freezes.

Our model demonstrates that banking crises arise from a shrinking of the pool of aggregate

liquidity, which helps explain some important phenomena in the recent crisis. For example, the

recent crisis originated in the US, where there had been an asset fundamental shock � the subprime

mortgage crisis; however, the �rst bank that su¤ered bank runs was Northern Rock, a UK bank.

The reason, we emphasize, is that Northern Rock and the US institutions tapped the same short-

term funding market (see the evidence in Shin (2009)).

As for policy implications, our model considers two ex post intervention measures: liquidity

injections and public disclosure. First, when a negative aggregate shock hits, injections of liquidity

into the �nancial system are crucial to break the vicious cycle of feedback. The debate on whether

central banks should provide emergency liquidity assistance went on well before the recent crisis.

Goodfriend and King (1988) (see also Bordo (1990), Kaufman (1991) and Schwartz (1992)) remark

that banking policy was necessary at a time when �nancial markets were underdeveloped; however,

�with sophisticated interbank markets, banking policy has become redundant�. In other words,
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they argue that with a well-functioning interbank market, a solvent institution cannot be illiquid.3

Our work shows that under market frictions (imperfect information) there exists a vicious cycle of

feedback that can amplify a small shock in insolvency into a systemic crisis, which justi�es ex post

intervention. Our model stresses that when the banking system is hit by an aggregate shock, the

purpose of government intervention with liquidity injections is not to save a single bank, but to

in�uence the interaction (among banks and with creditors) within the system and thereby improve

overall e¢ ciency. Second, public disclosure can improve e¢ ciency. If the government is informed of

individual banks�asset quality (through, for example, stress tests), there exists an optimal degree

of transparency in public disclosure. Neither too much nor too little disclosure is e¢ cient.

Related literature Our paper is related to the research that uses global game methods to

address illiquidity risk (e.g., Morris and Shin (2004a, 2009), Rochet and Vives (2004), Goldstein and

Pauzner (2005), Liu and Mello (2011), Eisenbach (2011)).4 Rochet and Vives (2004) and Goldstein

and Pauzner (2005) are the �rst to apply global games to study bank runs. Morris and Shin

(2009) build an analytical framework to decompose the creditor risk in a �nancial institution into

insolvency risk and illiquidity risk. Bebchuk and Goldstein (2011) and Vives (2014) build general

frameworks to incorporate the results in this literature and analyze policy measures. Our paper

contributes to this literature in that we study the interplay between illiquidity risk and insolvency

risk in a �nancial system context by considering the interbank market and analyze systemic e¤ects

that play a large role in a crisis. We explicitly model the interbank market, explain feedback

loops between creditor runs and interbank trading, and examine the transmission of shocks across

institutions through the interbank market.5

Closely related to our work are Rochet and Vives (2004) and Goldstein (2005). Rochet and

Vives (2004) study a creditor-run model with global games for a single bank in the presence of an

3See Rochet and Vives (2004) and Freixas and Rochet (2008) for a comprehensive discussion on this debate.
4 In a related model not using global games, He and Xiong (2012) study the intertemporal coordination problem

among creditors.
5Liu and Mello (2011) study the optimal cash holdings in the presence of coordination risk for a single institution

in a partial equilibrium framework. Eisenbach (2011) constructs a model to endogenize the liquidation value (or the

��re sales penalty�in the language of Vives (2014)) by assuming an exogenous demand curve of the asset. Our work

di¤ers from his in at least two important ways: �rst, we study and endogenize the competitive interbank market;

second, the ex ante problem of banks is studied, so the aggregate liquidity in the system is endogenous.
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interbank market, where the interbank market and the interbank rate (or the ��re sales penalty�)

are exogenous. Among other results, their model shows that the creditor-run equilibrium is a¤ected

by the interbank rate. To a large extent, our model provides a general-equilibrium treatment of

Rochet and Vives (2004) and endogenizes the interbank market in their model. We show that the

creditor-run equilibrium in the system a¤ects, and is in turn a¤ected by, the interbank rate.

Goldstein (2005) models the twin crises phenomenon in a global-games framework, which in-

tegrates the banking sector in Goldstein and Pauzner (2005) with the currency market in Morris

and Shin (1998). His model shows that strategic complementarities exist not only within a group

of creditors or within a group of currency speculators, but also between the two groups. The ad-

ditional type of complementarities generates a vicious circle between banking crises and currency

crises. Close in spirit to his insight, our model shows that there exists a vicious circle between cred-

itor runs and interbank market freezes. Our paper adds to Goldstein (2005) in the following way.

Goldstein (2005) abstracts the bank sector to one single bank and models the currency market in a

reduced form. We explicitly model the banking sector with a continuum of banks and endogenize

the competitive interbank market. The interbank market in our model is a Walrasian economy amd

not a game; the price � the interbank rate � plays a key role in determining the equilibrium. To

this end, we emphasize the feedback loop between asset prices and creditor runs.

Our paper is related to Diamond and Rajan (2005) in that both papers demonstrate that

banking crises can arise from a shrinking of the pool of available aggregate liquidity. There are no

interbank market or coordination issues (panics) among creditors of a bank in Diamond and Rajan�s

(2005) model. Di¤erent from their study and contributions, modeling the two-way feedback between

trade in the interbank market and creditor runs is a key emphasis of our model. The feedback loop

in our paper is between asset prices and coordination risk, i.e., a higher interbank rate (a lower asset

price) means that a bank can withstand withdrawals by fewer creditors and is more fragile, thereby

increasing the di¢ culty of coordination among creditors to not run. This is related to, but di¤erent

from, the feedback between asset prices and the leverage or margin constraints in the models of

Gromb and Vayanos (2002) and Brunnermeier and Pedersen (2009). In another related study, Iori,

Jafarey and Padilla (2006) evaluate based on simulations how the statistical characteristics of a

market�s constituents and their interconnectedness a¤ect systemic risk of the interbank market,

but with exogenous strategies of the participants and risk of liquidity shortages.
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On the empirical side, Copeland et al. (2011), Gorton and Metrick (2011), and Krishnamurthy

et al. (2012) provide evidence on repo runs. Gorton and Metrick (2011) argue that the �run

on repo�played a key role in the collapse of the US shadow banking system. Krishnamurthy et

al. (2012), on the other hand, argue that the contraction in repo funding �ows from non-bank

lenders to shadow banks was small; the magnitude was relatively insigni�cant compared with the

contraction in ABCP. Our model implies the importance of distinguishing between two types of repo

lending, non-bank to dealer repo lending (largely tri-party) and interbank repo lending between

dealers (largely bilateral), and demonstrates the feedback between interbank market freezes (such

as bilateral repo runs) and creditor runs (such as runs through ABCP and tri-party repo).

The rest of the paper is organized as follows. Section 2 sets up the model. Sections 3 and 4

present the equilibria. Section 5 studies the model under an aggregate shock. Section 6 discusses

policy implications of the model. Section 7 concludes.

2 The model

The model has three dates: T0, T1, and T2, and there is no time discount for simplicity. All agents

are risk-neutral. We discuss banks, the interbank market and bank runs, in that order.

2.1 Banks

There is a continuum of banks (commercial or investment banks, or more broadly, institutions in

the shadow banking system) with unit mass, indexed by i 2 [0; 1]. Ex ante, at T0, these banks are

identical. Each bank has one unit of cash, which is �nanced by the owner of the bank (hereafter,

equityholder or bankowner) as well as a continuum of short-term creditors (depositors) of total

measure F , each contributing 1 unit of cash.6 That is, the liability side of the balance sheet of

a bank at T0 includes debt of total face value F and the equity value 1 � F , where 0 < F < 1.

We can think of each bank as a regional or sectoral bank with its own investor (creditor) pool. A

creditor�s reserve value (opportunity cost) of lending is R0 per unit of cash, where R0 � 1.
6The short-term debt in our model may play the role of disciplining (Calomiris and Kahn (1991), Diamond and

Rajan (2001)). For example, without the threat of a potential short-term debtholder run, the owner of a bank could

take (o¤-equilibrium) actions that make the bank�s asset more risky with a negative NPV. Kacperczyk and Schnabl

(2010) provide indirect evidence for the disciplining role of short-term debt.
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At T0, a bank needs to make its investment portfolio allocation: cash holdings and investment

in a long-term asset (technology). Each bank has access to a long-term risky asset (technology)

with stochastic payo¤s at T2. The unit cost of a long-term asset at T0 is 1. If a long-term asset

is physically liquidated at T1, it realizes " (close to 0) liquidation value. Denote the investment

decision of a bank at T0 by (c; 1 � c), where c is the amount of cash holdings and 1 � c is the

amount of investment in the long-term asset. A bank�s balance sheet at T0 is represented by Figure

1, where AS and AL are the short-term liquid asset and long-term illiquid asset, respectively.

Figure 1: Balance sheet of banks at T0

The uncertainty about the payo¤ of a bank�s long-term asset will be resolved gradually, as

shown in Figure 2. The uncertainty at T0 is characterized by random variable �, interpreted as

asset quality. � has smooth density g(�) and cumulative distribution function G(�) in the support

of clopen set [�1;1]. The mean of � is � and its standard deviation is �. At T1, the uncertainty

about each individual bank�s asset quality is resolved. Speci�cally, bank i realizes its asset quality

�i, where �i is independently drawn from the identical probability distribution � � g(�). That is,

banks are identical ex ante but heterogeneous (with idiosyncratic shocks) at T1. At T2, one of the

two cash �ows, f0; Xg, will be realized per unit of a long-term asset. The probability of realizing

X for an asset of quality �i is �(�i), where �(�) is a continuous and increasing one-to-one function,

� : [�1;1]! [�; �], with 0 � � < � � 1. We also assume that
Z 1

�1
[X � �(�)] g(�)d� > R0, which

means that investing in a long-term asset is pro�table ex ante at T0.

Figure 2: The uncertainty about the payo¤ of a long-term asset
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In addition, we assume that asset payo¤ realizations at T2 across banks are positively correlated

(as in Holmstrom and Tirole (1997)).7 Speci�cally, if a higher-� bank�s asset cannot deliver cash

�ow X at T2, then neither can a lower-� bank�s asset. The only purpose of this assumption is to

ensure that the risk of debt of a higher-� bank cannot be reduced (diversi�ed away) when it acquires

some assets from lower-� banks. Concretely, we can make the following simple speci�cation. Let

the economy have a continuum of states at T2, denoted by ! 2 [0; 1]. The realization of the state

will be drawn by the nature at T2 uniformly, i.e., ! � U [0; 1]. An asset of quality � at T1 has state-

dependent payo¤ at T2 of ex(�; !) =
8<: X if ! 2 [0; �(�)]

0 if ! =2 [0; �(�)]
. Thus, we have i) Pr (ex = Xj�) = �(�)

and ii) ex(�0; !) � ex(�00 ; !) for �0 > �00 under any state !, with strict inequality holding for some !.
The owner of a bank gets informed, at T1, of the quality of his bank�s long-term asset as well

as the quality of assets of other banks. Empirical evidence suggests that bankers, as insiders, have

information about each other�s status (see, e.g., the �ndings in Afonso, Kovner and Schoar (2011)).

But a creditor of a bank receives only a signal at T1 regarding the quality of long-term asset of

his own bank. Speci�cally, the signal received by creditor j in bank i (about asset quality �i) at

T1 is xij = �i + ��j , where � > 0 is constant, and the individual-speci�c noise �j is distributed

according to the smooth symmetric density h(�) with mean 0 (writing its c.d.f. as H(�)). �j is i.i.d.

across creditors of a bank, and each is independent of �i. Like creditors, outsiders including a court

cannot observe or verify the asset quality of a bank at T1, as in the incomplete contract literature.

Such a setup � the realization of idiosyncratic shocks being unveri�able � is employed in a large

literature including Diamond and Dybvig (1983) and Bhattacharya and Gale (1987).

Creditors of a bank are o¤ered demand-deposit-like contracts: if a creditor calls his loan at T1,

his claim is the par (face) value 1; if, instead, he decides to roll over his loan until T2, the notional

(promised) value of his claim is R, where R is the gross interest rate, to be endogenized.8

For tractability, we use the following distributions and function speci�cations throughout the

paper. The (prior) distribution of � is assumed to be Gaussian. Speci�cally, � � N(�; �2); that is,
7Holmstrom and Tirole (1997) argue that correlation may come from intermediaries�incentive of choosing corre-

lated projects, or their specialized expertise in monitoring projects, or macroeconomic shocks.
8Without loss of generality, we normalize the interim notional claim at T1 to 1. What matters for the model is

the interest rate between T1 and T2, i.e., R.
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g(�) = 1
��(

���
� ), where �(�) stands for the p.d.f. of the standard normal distribution. The c.d.f of �

is thus G(�) = �( ���� ), where �(�) is the c.d.f. of the standard normal distribution. Furthermore,

we assume that �(�) = �+(���)�( ������
), where �� and �� are parameters. If �� = � and �� = �,

it is easy to check that �(�), as a function of �, is uniformly distributed with �(�) � U [�; �]; that

is, the probability that a bank�s long-term asset will realize X at T2 as perceived at T0 is uniformly

distributed within [�; �]. The distribution of signal noise �j is assumed to be the standard normal:

�j � N(0; 1); that is, h(�) is �(�) and H(�) is �(�).

2.2 Interbank market

An interbank credit market opens at T1, where banks can borrow and lend short-term funding

among themselves. For instance, the interbank market can be the (bilateral) repo market. Denote

the total (maximum) amount of cash available to a bank at T1 by cT1 , which includes the bank�s

own cash holdings (c) and the net borrowing from the interbank market. It will become clear later

that cT1 is a function of asset quality �
i.

Two remarks are in order. First, in our general equilibrium model, when a bank raises liquidity

at T1 the liquidity must come from other banks in the system. Interbank borrowing means that

a bank obtains some cash at T1 from other banks but gives up some of its cash �ow (from its

long-term projects) at T2 to repay those banks. That is, there is an exchange between T1-cash

�ow and T2-cash �ow. The interbank rate is de�ned as the ratio of the expected T2-cash �ow

(repayment) to the T1-cash �ow (borrowing). Second, in the spirit of one interpretation in Rochet

and Vives (2004), we assume that the interbank market is informationally e¢ cient, in the sense that

lender banks have information about the asset quality of the borrower bank. Hence, the amount of

liquidity that a bank can raise in the interbank market depends on the bank�s asset quality. This

assumption has strong empirical support (see the �ndings of Afonso, Kovner and Schoar (2011)).9

The interbank market often operates as the bilateral repo market, so there can be some search or

process by which a bank �nds the asset quality of the counterparty. The existence of LIBOR (a

9 In examining the recent �nancial crisis, Afonso, Kovner and Schoar (2011) do not �nd evidence that increased

information asymmetry (averse selection) leads to higher risk premiums in the market overall. Rather, they �nd that

loan terms become more sensitive to borrower characteristics and there is greater divergence in the cost of borrowing

and in access to liquidity between weaker and stronger banks.
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proxy for the competitive rate) also makes the interbank market resemble a central exchange-based

market in some respects (see the discussions in Du¢ e and Stein (2015)).

We acknowledge that the market of interbank lending is complex. It has mixed features of

a central exchange-based market (e.g., the existence of LIBOR) and an over-the-counter (OTC)

market. For tractability and to focus on the main message of the paper, we abstract away from the

complexity by studying a competitive interbank market and assuming no information asymmetry

between banks. Explicitly modeling the search process in the interbank market and the existence

of some degree of information asymmetry between banks is left to future research.

2.3 Bank runs

If a bank has greater than cT1 creditors declining to roll over their lending at T1, the bank cannot

ful�ll its debt obligation and will consequently fail � a creditor run.10

Following the work of Rochet and Vives (2004) (as well as Morris and Shin (2009)), we use

a simpli�ed payo¤ structure of the creditor-run game. Speci�cally, as in their work, we assume

that each creditor of a bank is an institutional investor (a fund), run by its fund manager. A fund

manager has the following compensation scheme. If the fund manager calls the fund�s investment

at T1, his payo¤ is a constant w0, or the face value 1 multiplied by proportion w0. This could be

because, as will be shown later, calling loans at T1 makes a creditor either fully recover the face value

of investment 1 or su¤er a small loss. w0 can also be interpreted as the fund manager�s monetary

compensation after deducting the non-pecuniary penalties (e.g., reputation loss). If, instead, the

fund manager holds the investment, his payo¤ is the fund�s return multiplied by . Throughout

the paper, we can assume that w0 ! 0 and  ! 0, meaning that the compensation to a creditor�s

fund manager is negligible relative to the total payo¤ to the creditor. The ratio w0
 is called the

�outside option ratio�in Morris and Shin (2009). Table 1 shows the simpli�ed payo¤ structure (for

a fund manager) of the creditor-run game, where the bank has asset quality � at T1.

10The physical liquidation value of illiquid assets is "! 0. The bank fails as soon as physical liquidation starts.
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Total calling no greater than cT1

(bank survives)

Total calling greater than cT1

(bank fails )

Hold

8<: R (prob �(�))

0 (prob 1� �(�))
11 0

Call w0 w0

Table 1: Creditor-run payo¤ structure

By introducing a third party, fund managers, we have a discrete-state payo¤ structure of the

creditor-run game. This simpli�ed structure captures the following key feature of the creditor-run

game: if the proportion of creditors of a bank calling the loans is higher than cT1
F , the optimal

strategy for an individual creditor is to also �call�; if, however, the proportion of creditors calling

the loans is less than cT1
F , the optimal strategy for an individual creditor is likely to also �hold�. The

simpli�cation in the payo¤ structure is a convenient way to deal with the fact that the property of

global strategic complementarities fails to exist in a creditor-run game; see Goldstein and Pauzner

(2005) for the full continuous-state payo¤ structure without simpli�cation.12

If we substitute w0 = 1 and  = 1 into Table 1, the payo¤ structure then describes the payo¤ to

a bank creditor without assuming the involvement of a fund manager. In this case, the simpli�ed

payo¤ structure is a close approximation of the full continuous-states payo¤ structure in Goldstein

and Pauzner (2005) (see Eq. (A.1) below).

2.4 Timeline

Without loss of generality, we assume that at T2 the principal and interest payment to (exist-

ing) bank creditors, who are o¤ered demand-deposit-like contracts, is senior to the repayment to

11We will verify that if and only if the long-term asset of a bank pays X at T2, the interest R is realized. In other

words, a fund manager obtains R with probability �(�) conditional on the bank�s surviving to T2.
12See also Dasgupta (2004) and Liu and Mello (2012).
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counterparty banks for the interbank borrowing.13 Figure 3 summarizes the timeline.14

Figure 3: Timeline

3 Equilibrium at T1 � creditor run-interbank market equilibrium

We conduct analysis by backward induction, from T1 to T0. In this section, for a given c and R,

which are set at T0, we work out the equilibrium at T1.

At T1, creditors of a bank need to make their rollover decisions; that is, they play a creditor-

run game. We are interested in the equilibrium where every creditor uses a threshold (monotone)

strategy. The strategy is given by

xij 7�!

8<: Call xij < x�

Hold xij � x�
,

13This assumption is purely for tractability (see Appendix D.1 for the robustness check). It is to make the cash

�ow pattern for each claimant simple, so that we can focus on the core of our mechanism. In fact, if interbank lenders

are senior to creditors, the bank can default to a creditor at T2 (even if the bank is liquid and thus does not default

at T1), in which case the cash �ow pattern for a creditor would be very complicated and it would be di¢ cult to make

his participation condition (IR) tractable although the model result does not change qualitatively.
14At T1, the rollover decision of creditors can be made either before or simultaneously with the interbank market

decision of banks. Creditors do not know the interbank rate when they make their rollover decisions, and thus they

must form expectations about it.
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where xij is the information of creditor j in bank i and x� is the rollover threshold.15 Since banks are

identical to creditors (putting aside their private signals), we consider the symmetric equilibrium

in which creditors of all banks use a common strategy, i.e., the threshold x� is not bank-speci�c.

As the prior distribution, � � N(�; �2), is equivalent to public information about the asset quality

for a creditor, a creditor�s strategy x� depends on public information (mean �). We focus on the

case of 0 << �
� << +1; that is, both private information and public information are valuable.

We also make one technical assumption here.

Assumption 1 (Upper dominance region) There exists an upper dominance region xij 2

[x�U ;1) in which holding is the dominant strategy for a creditor. Speci�cally, we assume that when

a bank�s realized asset quality � at T1 is above a su¢ ciently high threshold, �U , the government

will be informed of its asset quality and is willing to bail it out (e.g., provide liquidity support)

in the event that the bank cannot satisfy its creditors�early withdrawals on its own and seeks the

government�s support. That is, a bank never fails at T1 when its � 2 [�U ;1]. Therefore, if a

creditor�s signal is in the upper region xij 2 [x�U ;1), he does not run, no matter what his belief

regarding the behavior of other creditors is, where x�U is a function of �U to be speci�ed.

The assumption of the existence of an upper dominance region for the bank-run game follows

Goldstein and Pauzner (2005). Note that like the e¤ect of deposit insurance in Diamond and

Dybvig (1983), the bailout will never actually be needed in equilibrium. That is, in equilibrium,

when � � �U the bank can always satisfy its creditors�early withdrawals on its own, which will

become clear later.

We �rst consider the benchmark equilibrium in the absence of an interbank lending market,

and then consider the equilibrium in the presence of one.

3.1 Benchmark equilibrium at T1 without an interbank lending market

In this case, we assume that banks are in autarky and there is no interbank lending market at T1.

So, cT1 = c. For this autarky case, we can treat the system as having a representative bank.

15 In the �nance literature on applications of global games, the threshold (monotone) equilibrium is of primary

interest. For example, Morris and Shin (2004b, 2009) consider only threshold (monotone) equilibria. The restriction

to threshold strategies can be without loss of generality (see Vives (2014)).
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We solve the creditor-run game equilibrium at T1 of the representative bank for a given c and

R. We de�ne another threshold b�, which is the equilibrium bank failure threshold; that is, if and

only if the bank�s realized fundamental value � is below b� does the bank fail at T1.
For a given b�, we consider the position of a creditor whose decision proxy is his fund manager.

The marginal creditor (fund manager) in the bank who receives signal x� is indi¤erent to holding

or calling, so we have Z b�
�1
0 � hg(�jx�)d� +

Z 1

b� (R) � �(�) � hg(�jx�)d� = w0, (1)

where hg(�jx�) is the posterior (conditional) density with the prior being g(�). The right-hand side

(RHS) of (1) is the payo¤ of calling. The left-hand side (LHS) of (1) expresses the payo¤ for the

marginal creditor (fund manager) when he decides to roll over: if � < b�, the bank cannot survive
to T2 and he gets nothing � the �rst term; conditional on the bank�s surviving to T2, his expected

payo¤ is (R) ��(�) for a given realization of � � the second term.16 Equation (1) can be rewritten

as Z b�
�1
0 � hg(�jx�)d� +

Z 1

b� (R � �(�)) � hg(�jx�)d� =
w0

. (1�)

From (1�), when w0
 = 1 the rollover decision is identical to that when w0 = 1 and  = 1 in Table

1 and a creditor makes his rollover decision directly without involving a fund manager.

For a given x�, we consider the position of the bank. When the fundamental value of the bank is

�, the proportion of its creditors calling is Pr(�+ ��j < x�j�) = H(x���� ). Therefore, the bank with

marginal fundamental value b� has a proportion H(x��b�� ) of its creditors calling. By the de�nition

of b� and the nature of creditor runs, we have
c = F �H(x

� � b�
�

). (2)

The system of equations (1)-(2) determines the creditor-run equilibrium.17 We have Lemma 1.

16 In the benchmark (for purpose of comparison), we assume that the residual cash in a bank at T2 carried over

from T1, if any, is not contractible (e.g., the equityholder can steal it). This assumption is temporary and will not

be necessary in the full equilibrium with an interbank market, where in equilibrium no banks have residual cash.

17Now we can specify x�U as a function of �U , which is given by
Z 1

�U
(R) � �(�) � hg(�jx�U )d� = w0. Hence, to

ensure that when � � �U , the bank can always satisfy its creditors�early withdrawals on its own, the equilibrium x�

must satisfy the condition of c � F �H(x���U
�

).
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Lemma 1 Without an interbank market, the creditor-run equilibrium at T1 is characterized by the

pair (x�;b�), which solves the system of equations (1)-(2) for a given c and R. The equilibrium is

unique when �
� is small enough (the equilibrium is stable).18 We have comparative statics @x�

@c < 0

and @x�

@R < 0.

Proof. See Appendix C.

The intuition behind the comparative statics in Lemma 1 is as follows. If the bank has more cash

holdings, it can withstand withdrawals by more creditors and is less vulnerable, thereby lowering

the threshold for coordination among creditors to not run. In other words, a higher c means that

the chance of the accident of miscoordination among creditors at T1 is lower; consequently, creditors

are more comfortable with staying until T2 and thus set a lower running threshold x�. A higher R

means that creditors have a higher stake in the bank at T2 and thus have lower incentives to run.

Throughout the paper, we change � while keeping � constant, and hence the statement that � �� is

small enough�means that �� is small enough�.

It is instructive to examine the creditor-run equilibrium under the limit � ! 0 for a given �.

By (2), we have b� = x� � ���1( cF ). So we can combine (1) and (2):
�=+1Z

�=x�����1( c
F
)

(R) � �(�) � hg(�jx�)d� = w0.

Under the limit � ! 0 for a given �, it is easy to show that the above equation can be transformed

to
c

F|{z}
Coordination (illiquidity) risk

� R � �(x�)| {z }
Fundamental (insolvency) risk

=
w0

. (3)

(3) becomes very intuitive: the term c
F measures coordination (illiquidity) risk while R � �(x

�) cor-

responds to fundamental (insolvency) risk. The uniqueness of the solution of x� is straightforward.

The economic intuition behind the derivation of (3) is the following. Under the limit � ! 0, fun-

damental uncertainty disappears, i.e., � ! x�. However, strategic uncertainty does not. From the

marginal creditor�s perspective, the proportion of creditors calling loans is uniformly distributed

18 In a �stable�equilibrium, the best response function (of an individual player to its peers) intersects the 450 line

at a slope of less than 1. See, e.g., Morris and Shin (2003), Vives (2005, 2014) and Angeletos et al. (2006, 2007).
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within [0; 1]. So the probability that the proportion of creditors calling loans is less than c
F is

exactly c
F .

Remark 1 Our benchmark model can be regarded as a hybrid of the models of Rochet and Vives

(2004) (Vives (2014)), Goldstein and Pauzner (2005), Morris and Shin (2009) and Liu and Mello

(2011). We have chosen a model setting tailored to our purpose to study creditor runs in the

presence of an interbank market. Morris and Shin (2009) and Vives (2014) provide a comprehensive

analysis on illiquidity risk and insolvency risk for a single �nancial institution.

3.2 Equilibrium at T1 with an interbank lending market

Without an interbank lending market at T1, the cash holdings of a bank are either not enough or

wasted at T1. Now we consider the case where an interbank lending market opens at T1, so banks

can borrow and lend funds among themselves.

The formal de�nition of the equilibrium at T1 with an interbank market is as follows.

De�nition 1 An equilibrium at T1 is de�ned by a triplet (x�;b�; I) for a given c and R, where x�
is the rollover threshold for creditors of a bank, b� denotes the marginal bank in the system that

survives at T1, and I is the risk-adjusted gross interbank market rate, such that (i) given rational

expectations of I, creditors of a bank set their optimal rollover threshold as x�; and (ii) given

creditors�strategy x� in all banks, the competitive interbank market determines (b�; I).
The equilibrium in fact comprises two elements: the creditor-run equilibrium for an individual

bank and the interbank-market equilibrium. We analyze them one by one.

The creditor run for an individual bank in equilibrium Like the autarky case, the

creditor-run equilibrium for individual bank i is characterized by (x�i;b�i), where x�i is the rollover
threshold of creditors of bank i and b�i is the failure threshold for bank i. Superscript �i�in notationsb�i and x�i highlights the fact that creditors of each individual bank are with �local thinking��
they only consider the position of their own bank and do not necessarily have a global view of the

banking system.
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The creditor-run equilibrium for bank i is given byZ b�i
�1
0 � hg(�jx�i)d� +

Z 1

b�i (R � �(�)) � hg(�jx�i)d� =
w0


(4a)

c+
C(b�i;x�i)

I
= F �H(x

�i � b�i
�

), (4b)

where function C(�;x�i) =
h
(1� c)X �R � F �

�
1�H(x�i��� )

�i
�(�) denotes the collateral value

of bank i with asset quality �. (4a)-(4b) parallel (1)-(2). The di¤erence is that the presence

of an interbank market allows an individual bank to borrow liquidity from it, so we have (4b), in

comparison with (2). In fact, if the borrowing is impossible (i.e., I = +1), (4b) exactly corresponds

to (2). Under the competitive interbank market, every bank is a price-taker and takes the interbank

rate I as given. The liquidity status of the bank depends on its own liquidity holdings, c, and the

short-term funds it can raise from the interbank market. (4b) gives the condition under which the

bank will fail for a given I.

We explain (4b). When the bank has asset quality �, a number of F � H(x�i��� ) creditors

will call it at T1, and the remaining F �
�
1�H(x�i��� )

�
creditors will stay until T2. Hence, the

expected payo¤ that will accrue to the bank�s equityholder at T2, after paying its staying creditors,

is C(�;x�i) =
h
(1� c)X �R � F �

�
1�H(x�i��� )

�i
�(�), which is the collateral value. Figure 4

shows the balance sheet position for the bank at T1. So the bank can borrow a maximum
C(�;x�i)

I

from the interbank market at T1; that is, cT1 (�) = c + C(�;x�i)
I . Because its required liquidity is

F �H(x�i��� ), we can obtain the bank failure threshold b�i.

Figure 4: Bank i�s balance sheet position at T1
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The following lemma summarizes the creditor-run equilibrium for an individual bank.

Lemma 2 In the presence of an interbank market, the creditor-run equilibrium for individual bank

i is characterized by the pair (x�i;b�i), which solves the system of equations (4a)-(4b) for a given

expectation of I. When the equilibrium is stable, we have comparative statics @x�i

@I > 0.

Proof. See Appendix C.

Lemma 2 highlights the coordination equilibrium within a bank. The intuition behind the

comparative statics in Lemma 2 is as follows. As in Lemma 1, the liquidity status of a bank

impacts the coordination risk among its creditors in debt rollover decisions. Ceteris paribus, a

rise in funding cost in the interbank market means a deterioration of a bank�s liquidity status. So

the coordination risk among creditors increases and thus creditors run more often. That is, the

expectation of an increase in I leads to a higher x�i.19

Remark 2 Rochet and Vives (2004) study a creditor-run model with global games for a single bank

in the presence of an exogenous interbank market. They show that the creditor-run equilibrium is

a¤ected by the interbank rate (i.e., parameter � in their model). Our model so far (Lemma 2)

resembles Rochet and Vives (2004). The interbank rate I in our model parallels parameter � in

their model. In what follows, we endognize the interbank market and the interbank rate I.20 ,21

The interbank market in equilibrium Given creditors�strategy x� in all banks ` 6= i,

the interbank market in equilibrium is given by the following two joint equations:Z 1

b� cg(�;�)d� =

Z 1

b� F �H(x
� � �
�

)g(�;�)d� (5a)

I =
C(b�;x�)

F �H(x��b�� )� c
. (5b)

19A higher interbank rate leads to greater downside risk for bank creditors, but no upside risk. Concretely, creditors

of a bank su¤er if their bank cannot borrow from the interbank market but they do not bene�t if their bank makes

a pro�t from interbank lending (i.e., all the pro�ts accrue to the bank equityholder), by noting that the pro�ts are

in terms of cash �ow on top of X due to the positive asset payo¤ correlation at T2 across banks. So creditors react

to their expectation of a higher interbank rate by running more often.
20Rochet and Vives (2004) provide two alternative interpretations for parameter �: asymmetric information and

liquidity problems. Our study is along the line of their second interpretation � liquidity problems.
21As will be shown, in our model, both the demand and supply of liquidity in the interbank market are endogenous.

So there does not exist an aggregate demand curve (function) of bank assets such that the amount of liquidity a bank

can raise is a function of the quantity of its assets put up for sale or put forward as collateral.
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(5a) is the interbank market clearing condition, where b� denotes the marginal bank in the system
that survives at T1. Banks indexed � � b� survive while all others fail. Hence, the aggregate liquidity
that surviving banks possess is

Z 1

b� cg(�;�)d�. For a bank with asset quality �, its required liquidity

for survival is Pr(� + ��j < x�j�) = F � H(x���� ). So market clearing dictates that equation (5a)

must be true. (5b) says that in equilibrium the interbank rate I must be equal to the marginal bankb�0s collateral value divided by its funding shortage. This is due to the nature of the competitive
interbank market. In fact, if the price deviates from the one in (5b), the interbank market will not

clear. Concretely, if the interbank rate is higher, the marginal bank b� as well as the banks of a
lower quality would not be able to a¤ord the liquidity, and so the total supply of liquidity would

exceed the total demand. On the other hand, if the interbank rate is lower, some banks of a lower

quality would be able to a¤ord and thus would demand and compete for liquidity, and so the total

demand would exceed the total supply.

More concretely, based on (5a)-(5b), three segments of banks exist endogenously at T1 according

to their realized asset quality. Let �T be the solution to c = F �H(x���T� ).

Failing Banks � 2
h
�1;b�� These banks do not participate in the interbank market (i.e.,

they neither lend nor borrow). They do not borrow because they cannot a¤ord the term I. In

fact, if such a bank were to borrow at the rate I, the borrowed liquidity plus its own liquidity

would still be insu¢ cient to cover the demand of its creditors, i.e., c+ C(�;x�)
I < F �H(x���� ).

The liquidity shortage means that a bank run will occur, and the bank�s long-term project

will terminate prematurely and be physically liquidated (with " ! 0 liquidation value),22

so no lenders are willing to lend to it in the �rst place. We also assume that a bank that

goes bankrupt at T1 has no ability at T2 to recover its investment if it lends in the interbank

market, so it does not lend in the �rst place.23

Borrowing Banks � 2
hb�; �T� These banks do not have enough of their own liquidity to cover

their creditors�withdrawals. To avoid bankruptcy, such a bank will borrow just enough to

cover its creditors�withdrawals. Bank ��s required liquidity is F �H(x���� ), so it will borrow

F �H(x���� )� c.
22A bank run makes the ex post Coasian negotiation impossible (Diamond and Rajan (2001)).
23When a decision makes no di¤erence to its equity value, a bank will choose to maximize the value of its debtholders.
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Lending Banks � 2
�
�T ;1

�
These banks have excess liquidity. As long as I � 1, such a bank

will have incentives to lend out its excess liquidity. Thus, the net borrowing is F �H(x���� )�c,

which is negative. It will be shown that the optimal amount of cash holdings decided at T0

in equilibrium cannot be �excess�, so that I � 1 is true at T1.

From the above, equations (5a)-(5b) constitute a competitive equilibrium because: i) given

the interbank rate I and x�, banks make their optimal borrowing and lending decisions; ii) the

borrowing and lending of banks clear the interbank market. Put slightly di¤erently, the price given

by (5b) is the only price that can clear the market. If I deviates, then b� will be di¤erent based
on (5b), so equation (5a) cannot be satis�ed. We summarize the interbank-market equilibrium as

follows.

Lemma 3 The competitive equilibrium of the interbank market is characterized by (b�; I), which
is the unique solution to equations (5a)-(5b) for a given x� (under a small enough c, precisely

established in the proof). We have @I
@x� > 0 and

@I
@� < 0.

Proof. See Appendix C.

The intuition for Lemma 3 is the following. The more conservative the creditors are (i.e., a

higher x�), the more liquidity a bank needs (i.e., a higher F �H(x���� ) for every given �). Banks

will demand more and supply less liquidity in the interbank market, and hence the equilibrium

interbank rate I will be higher. When there is an aggregate negative shock to asset quality (i.e.,

a lower �, by recalling � � N(�; �2)), � will in general become smaller and some banks will need

more liquidity. This means that either the aggregate demand for liquidity in the interbank market

will increase or the aggregate supply will decrease or both, which drives up the interbank rate.

Finally, because of the symmetric equilibrium of creditors�strategy across banks, we have

x�i = x�. (6)

We summarize the equilibrium at T1 in Proposition 1.

Proposition 1 In the presence of an interbank market, the creditor run-interbank market equi-

librium at T1 is de�ned by the triplet (x�;b�; I), which solves the system of equations (4a)-(4b),

(5a)-(5b) and (6) for a given c and R.
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Proposition 1 highlights the interdependence of runs on �nancial institutions and trade in the

interbank market. Earlier works such as Bhattacharya and Gale (1987) and Allen and Gale (2000)

model the interbank market based on the assumption that there exist exogenous ex post bank-

speci�c liquidity shocks. In our model, the illiquidity risk of banks is endogenous, originating in

bank-speci�c solvency shocks. Using our framework of the interbank market, we show that the

rollover decision of creditors of an individual bank and the interbank rate are jointly determined in

equilibrium, which in turn is dependent on the status of the aggregate economy (fundamentals �).

These results, not already known in the literature, help explain the evidence and facts discussed in

the introduction.

The equilibrium at T1 in fact comprises two subequilibria. We have the following corollary.

Corollary 1 The (within-bank) creditor-run equilibrium ((4a)-(4b) and (6)) determines x� for

each expectation of I, while the (cross-bank) interbank-market equilibrium ((5a)-(5b)) determines I

for a given x�. The creditor run-interbank market equilibrium in the system at T1 is characterized

by the �xed point problem between x�(I) and I(x�;�).

Proof. See Appendix C.

3.3 Characterization of the equilibrium

We will now characterize the equilibrium in Proposition 1. In our model, there is two-way feed-

back between x� and I. In general, two-way feedback can generate multiple equilibria. We �rst

characterize the existence of a unique equilibrium.

Proposition 2 The creditor run-interbank market equilibrium at T1 is unique when �
� is small

enough (the equilibrium is stable).

Proof. See Appendix C.

We can �nd the unique equilibrium in Proposition 2 under the limit � ! 0 for a given �. In

this limiting case, we have R � �(x�) = w0
 , �(

b���
� ) =

F ��(x
���
�

)�c
F�c and I = [(1�c)X]��(b�)

F�c .

When �
� is high enough, equilibrium uniqueness may not hold. In this case, a changed expecta-

tion of creditors on the interbank rate will change the creditor-run equilibrium, which in turn can

result in an interbank-market equilibrium that actually ful�lls the di¤erent interbank rate conjec-

tured. That is, there may exist multiple self-ful�lling creditor run-interbank market equilibria.
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Proposition 3 When �
� is high enough, there are multiple (typically two) creditor run-interbank

market equilibria. One equilibrium (the higher I one) is Pareto-dominated by the other equilibrium

(the lower I one).

Proof. See Appendix C.

Proposition 3 may explain the phenomenon of self-ful�lling interbank market freezes. Whereas

the classic works like Diamond and Dybvig (1983) show a self-ful�lling creditor run in a bank, we

show that a self-ful�lling freeze can occur in an interbank market. Intuitively, if creditors believe

that the interbank rate will be high and hence that their bank will be able to raise less liquidity

from the interbank market, they optimally choose to run more often. If creditors run more often,

all banks rationally demand more and supply less liquidity to protect themselves, leading to an

actual high interbank rate. Creditors�beliefs are thus con�rmed and become self-ful�lling.24

When � becomes higher (for a given �), creditors depend more on public information to make

their decisions and therefore equilibrium multiplicity becomes more likely (see also Morris and Shin

(2003) and Vives (2005, 2014)).

Illustration To better grasp the intuition behind equilibrium multiplicity in our model, we plot

in Figure 5 the payo¤ function for the marginal agent, Y (x�), under a set of parameter values.

Function Y (x�) is the expected payo¤ of rolling over for a creditor who receives a signal just equal

to x� given that all other creditors within the bank as well as creditors of other banks use threshold

x� (see (C.7) in Appendix C for the characterization). The solutions to equation Y (x�) = w0
 give

the equilibria. The parameter values except � for Figure 5 are given in Appendix B.

24Our self-ful�lling equilibrium might also carry over under the alternative assumption that banks move �rst and

creditors move later. In this case, banks�trade in the interbank market that determines I depends on their expectation

about x�; after seeing the interbank rate I, creditors�rollover decision ful�lls x� in equilibrium.
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Figure 5: Marginal agent�s payo¤ function Y (x�) when private precision changes

In Figure 5, the intersections of the curves and the solid line ( w0 = 1) represent the equilibria.

When � is low enough, the equilibrium is unique. When � is high enough, there exist two equilibria.

The number of equilibria is the number of intersections that fall into the non-upper-dominance

region (�1; x�U ).

We denote two equilibria by (x�L;b�L; IL) and (x�H ;b�H ; IH), where x�L < x�H , b�L < b�H and

IL < IH . The latter (unstable) is Pareto-dominated by the former (stable). Figure 6 illustrates

the two equilibria; the vertical axis measures the threshold used by an individual creditor (x�j)

while the horizontal axis measures the threshold used by other creditors within the bank as well as

by creditors of other banks (x�). That is, x�j(x�) is the best response function for an individual

creditor.

Figure 6: Multiple (two) equilibria at T1
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One corollary to Proposition 3 follows.

Corollary 2 For a given �
� , equilibrium multiplicity (two equilibria) is more likely under a lower

c or a lower �, ceteris paribus.

Proof. See Appendix C.

The intuition behind Corollary 2 is the following. Ceteris paribus, a lower c or a lower � makes it

more likely for two possible equilibria to both fall into the non-upper-dominance region, (�1; x�U ).

Figure C-1 in Appendix C gives an illustration.

Remark 3 In Vives (2014), strategic complementarity increases with a higher liquidity ratio. This

is because a supersolvency region or an upper dominance region exists in Vives (2014) but not in our

model. If one considers an extended model of Vives (2014) by changing only the liquidation function

in his model to allow for non-existence of a supersolvency region (for example, the liquidation value

per unit in his model becomes 1
1+� with constraint M + I

1+� < D, instead of �
1+�), the extended

model of Vives (2014) delivers results consistent with those of our model.25

4 Equilibrium at T0

In this section, we study the equilibrium at T0; in doing so we will endogenize c and R. A key

result of this section is that allocation (c;R) is a function of the aggregate status of the economy at

T1 � distribution � � N(�; �2) or �. This result will be useful in the analysis in the next section.

To save space, we outline the basic logic and steps in �nding the equilibrium at T0 while rele-

gating the full analysis to Appendix A. We consider both the constrained second-best equilibrium

and the competitive equilibrium.

Constrained second-best equilibrium There are two steps in �nding the constrained

second-best equilibrium. First, we obtain the expected payo¤ to a creditor and hence his ex ante

participation condition at T0.26 This will determine R for a given c. Second, we consider the social
25The analysis is available upon request.
26We assume that when a creditor decides on his participation R, he takes into account the fact that his fund

manager�s objective is not entirely aligned with his own. The participation condition without involving a fund

manager needs the full continuous-state creditor-run payo¤ structure without simpli�cation as in Goldstein and

Pauzner (2005). See the recent work of Allen, Carletti, Goldstein and Leonello (2015) along this line.
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planner�s problem. The social planner�s objective is to maximize the total social surplus � the

aggregate value of all banks in the economy, including the failing banks at T1 and the surviving

banks at T2. The social planner faces the following tradeo¤: A higher c results in more banks

surviving at T1 (i.e., a lower b�), but also less investment in long-term projects in the economy. The

tradeo¤ leads to an optimal liquidity level c at T0.

Competitive equilibrium Our main focus in this paper is on the frictions at T1, i.e., infor-

mation asymmetry about banks�status at T1, so we abstract away from other frictions. Speci�cally,

we assume that the amount of cash holdings in banks c is publicly observed (and contractible) at

T0, as in the way Freixas and Rochet (2008) (p. 233-234) treat the model of Bhattacharya and Gale

(1987). Thus, the optimal cash holdings in the constrained optimum can be written in the private

contract between banks. That is, the constrained optimum can be implemented in the competitive

equilibrium because the contractibility solves the commitment issue. Alternatively, we can assume

that there is an ex-ante liquidity regulation in place, so all banks hold cash ex ante based on the

regulatory rule. Either way, the competitive equilibrium at T0, in which banks decide on their ex

ante liquidity holdings based on individual rationality, coincides with the constrained second-best

equilibrium.27

5 Aggregate shock: crisis and ampli�cation

In this section, we study our model under aggregate uncertainty, which has implications for the

occurrence of a crisis and ampli�cation.

So far we have assumed that there is no aggregate uncertainty but only idiosyncratic shocks

to banks; that is, the distribution g(�) is given and deterministic. Now we consider the case with

aggregate uncertainty. Speci�cally, we assume that there are two states of nature at T1 for the

aggregate economy: normal state (s = N) and bad state (s = B). Ex ante, at T0, the normal

state will occur with probability q and the bad state will occur with complementary probability. In

27Ahnert (2013), among others, studies the e¢ ciency of the ex ante cash holdings. Allen et al. (2009) and

Freixas et al. (2011) examine ex post central bank interventions. Brunnermeier and Oehmke (2013b) discuss various

ampli�cation mechanisms in the recent crisis. Other generally related papers investigate optimal maturity structure

choices (Brunnermeier and Oehmke (2013a)), the shadow banking system (Plantin (2013)), repo runs (Martin, Skeie

and von Thadden (2014)), and the interaction between two runs (Liu (2015)).
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s = N the asset quality distribution is given by gN (�), and in s = B the distribution is gB(�), where

gN has �rst-order stochastic dominance over gB. Speci�cally, the distribution of � is � � N(�; �2)

in state s = N and � � N(�B; �2) in state s = B, where � > �B.

In studying the ex-ante problem without aggregate uncertainty (Section 4 and Appendix A.1),

we have shown that for a given distribution g(�), the equilibrium at T0 determines allocation (c;R).

So, if agents can perfectly foresee the aggregate state, N or B, we have the corresponding allocation

decided at T0, denoted by (cs; Rs), where s = N and B. In comparison, in the presence of aggregate

uncertainty, agents are uncertain about the aggregate state at T1, so the ex-ante allocation (c;R)

is prepared for the �average�of the states s = N and B and (c;R) is an �average�of (cN ; RN ) and

(cB; RB) (see Appendix A.2).

Given (c;R) set at T0, the equilibrium at T1 varies for di¤erent realized states s = N and B.

We write the equilibrium correspondence as

(c; 1� c;R) gs�! (x�s;b�s; Is),
where 1 � c denotes the unit of illiquid asset, and s = N and B. Our focus of study is on what

happens when bad state s = B occurs.

To sharpen the implication, we consider the extreme case: q ! 1. This means that the bad

state will occur with negligible probability. Because the normal state will occur almost surely,

the allocation at T0 is completely determined by the distribution gN (�); namely, the allocation is

(cN ; RN ).28 State s = B in this case can be interpreted as the economy su¤ering an unexpected

aggregate shock (away from the normal state s = N). However, it is important to emphasize that

our model mechanism in this section depends on the existence of aggregate uncertainty, not on the

assumption that the shock is unanticipated.29

The equilibrium at T1 under the shock (i.e., state s = B) is given by the system of equations

(4a)-(4b), (5a)-(5b) and (6), where the allocation (c;R) is (cN , RN ), the asset quality distribution

28Note that in our model, agents are risk-neutral and therefore their marginal utility is constant (across states).
29 If the shock is anticipated (i.e., state s = B with a positive ex ante probability), the ex-ante allocation (c;R) is

prepared for the �average�of the states s = N and B. Ampli�cation will still occur at T1 in state s = B because the

realized state is a bad �shock�relative to the expectation of occurrence of the �average�of the states.
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g(�) in (5a) is replaced by gB(�), and the public information in (4a) is also replaced by gB(�).

The equilibrium outcome is intuitively denoted by (x�NB;b�NB; INB), namely, the equilibrium under
allocation (cN , RN ) with shock gN ! gB.

To highlight the mechanism, we focus on the case in which the equilibrium for the normal

state, (x�N ;b�N ; IN ), is unique. In this case, when the shock hits, there are two scenarios: the new
equilibrium, (x�NB;b�NB; INB), can be either unique or multiple.

We examine the �rst scenario, which is summarized in Proposition 4.

Proposition 4 Suppose the equilibrium in the normal state, (x�N ;b�N ; IN ), is unique. If the shock,
� � �B, is small, the new equilibrium, (x�NB;b�NB; INB), is also unique. We have x�NB > x�N ,b�NB > b�N and INB > IN .

Proof. See Appendix C.

The adverse shock gN ! gB (or � # �B) triggers a chain of actions and reactions in the system.

The starting point of the chain is @I(x
�;�)

@� < 0; that is, given x� unchanged, a lower � leads to a higher

I.30 Then, there is a feedback loop between I and x�, as illustrated in Figure 7. A higher interbank

rate exacerbates creditor runs (@x
�(I)
@I > 0). In turn, more severe runs in �nancial institutions tighten

the liquidity in the interbank market, driving up the interbank rate (dI(x
�;�)

dx� > 0). Empirically, I

measures the degree of interbank market freeze and x� measures the degree of liquidity evaporation

in the system. Therefore, interbank market freezes and liquidity evaporation reinforce each other,

which helps explain the unprecedented events in the recent �nancial crisis discussed at the beginning

of this paper. Put slightly di¤erently, an adverse aggregate shock triggers the reinforcing spiral

between a decreasing supply of liquidity (i.e., interbank market tightness) and an increasing demand

for liquidity (i.e., creditor runs) in the system.

30A lower � has another channel of e¤ect; that is, the public information changes from gN to gB in (4a). In fact,

(4a)-(4b) give x�i(I;�), where � is public information. Intuitively, each individual creditor of a bank receives bad

news about the asset quality of his own bank. In reality, the ABX index might be such public information.
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Figure 7: Ampli�cation through a feedback loop and spiral along a stable equilibrium

Next, we study the second scenario, which is Proposition 5.

Proposition 5 Suppose the equilibrium in the normal state, (x�N ;b�N ; IN ), is unique. If the shock,
� � �B, is large enough, multiplicity of the new equilibrium, (x�NB;b�NB; INB), can emerge. That
is, ampli�cation can also come through triggering multiple equilibria.

Proof. See Appendix C.

Proposition 5 shows another channel of ampli�cation � triggering self-ful�lling multiple equi-

libria. As shown in Figure 8, a small negative shock (�0B) can move A to A
0 (which is the case in

Proposition 4 and Figure 7), whereas a large enough shock (�00B) can move A to either A
00
or B

00

(which is the case in Proposition 5).
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Figure 8: Ampli�cation through triggering multiple equilibria

We would like to point out the limitations of the results associated to an unstable equilibrium

(namely, Proposition 3 and Proposition 5). According to Vives (2005, 2014), adaptive dynamics

in terms of best reply dynamics will not lead to an unstable equilibrium. The appearance of an

unstable equilibrium may not mean much if the system moves back to the stable equilibrium.

Aggregate liquidity shortage From the above analysis, banking crises in our model occur

because �nancial institutions tap the same pool of short-term funding. In our model, a lower-quality

bank fails not because it su¤ers a loss in its investment and thereby its capital when investing in

other banks, or because its own asset is hit by a negative shock and thus its demand for liquidity

increases. Rather, the key problem can be that some higher-quality banks in the system su¤er a

negative shock to their asset and thus need more liquidity than expected (in order to reduce their

illiquidity risk). The decrease in the net supply of liquidity from these higher-quality banks leads

to shrinking liquidity in the pool, which actually hurts lower-quality banks �rst and foremost. In

other words, negative shocks may hit higher-quality banks but it is the lower-quality banks that

su¤er �rst. In fact, the �nancial crisis of 2007-2009 originated in the US, where there had been a

subprime mortgage crisis, yet the �rst bank to su¤er bank runs was Northern Rock, a UK bank.31

31 In the literature that studies contagion through interbank claims (e.g., Allen and Gale (2000, 2004), Freixas et

al. (2000), Dasgupta (2004), Rochet and Tirole (1996), Freixas and Holthausen (2005)), the shocks are typically on
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6 Policy implications

In this section, we discuss policy implications of our model. We analyze two ex post intervention

measures when a negative aggregate shock hits.

Liquidity injections The analysis in Section 5 implies that a crisis goes with a shortage

of aggregate liquidity. Therefore, a natural ex post intervention policy is to inject liquidity into

the �nancial system. It is important to note that the pure promise of bailout in our model cannot

achieve the same e¤ect of deposit insurance in Diamond and Dybvig (1983) as a costless solution to

liquidity crises. This is because creditor runs in our model are both fundamental- and panic-based,

rather than purely panic-based (i.e., coordination problems) as in Diamond and Dybvig (1983) (see

Appendix C for a formal analysis).

Actual liquidity injection is necessary in intervention. Speci�cally, we consider the following

simple intervention scheme: when the bad state (s = B) occurs, the central bank provides liquidity

assistance to every bank in the system � every bank receives an amount of liquidity, 4c, from the

central bank (before creditors make their rollover decisions). Here we make a weak assumption that

the central bank does not know the quality of individual banks and hence distributes the liquidity

evenly across banks.

Program 1 gives the problem of the ex post optimal intervention policy for the central bank:

max
4c2[0;1)

Z b�NB
b�GB(4c)(1� cN )(X � �(�))gB(�)d� +4c� � (4c) (Program 1)

s.t. (cN +4c; 1� cN ; RN )
gB�! (x�GB;b�GB; IGB)

We explain Program 1. Without the ex post intervention, the threshold of the marginal bank

surviving is b�NB. With the ex post intervention, the equilibrium at T1 is summarized by (cN +

4c; 1 � cN ; RN )
gB�! (x�GB;

b�GB; IGB), where (x�GB;b�GB; IGB) denotes the equilibrium outcome

under the government intervention in the state s = B. We have that the new threshold of the

marginal bank b�GB is a decreasing function of 4c; that is, a higher amount of liquidity injections
lowers the threshold of the marginal bank in the system. In fact, liquidity injections enable banks

the liability side and contagion stems from contractual links between banks. Our paper models the shocks on the

asset side and highlights propagation through the impact on the illiquidity risk rather than on the insolvency risk.
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in the range � 2
hb�GB(4c);b�NBi to survive; otherwise they would fail, which is the gain from the

government intervention. In addition, the injected liquidity, 4c, stays in the private sector, which

is the second term of the objective function in Program 1. The total cost of the intervention is

� (4c), where � (�) denotes the gross (opportunity) cost function of funding (including pecuniary

and non-pecuniary costs), and � (�) satis�es � 0 > 0, � 00 > 0, and �(x) � x for any x � 0. The

government might source this funding through the issuance of public debt (domestic or foreign) at

T1, which it will repay by collecting tax from taxpayers (creditors) at T2.

It is straightforward to see that in Program 1, the optimal amount of liquidity assistance, 4c,

can be positive. The reason is simple: the gain from liquidity assistance, measured by the distance

of b�NB � b�GB(4c), can be high. Indeed, based on Corollary 2, the increase in cash can eliminate
self-ful�lling multiple equilibria besides breaking the feedback cycle; both e¤ects reduce b�. Remark
4 immediately follows.

Remark 4 When the bad state (s = B) occurs, an optimal ex post intervention of liquidity injec-

tions is given by Program 1. Liquidity injections help not only to break the feedback spiral along the

stable equilibrium but also to eliminate self-ful�lling multiple equilibria.

Two comments are in order. First, the e¢ ciency gain from the intervention comes from saving

illiquid projects from premature liquidation. Without intervention, the aggregate liquidity shortage

in the system would lead to the early closure and physical liquidation of illiquid long-term projects

in banks indexed � 2
hb�GB(4c);b�NBi. Second, when the economy is hit by an aggregate shock,

the purpose of government intervention is not to save a single bank, but to in�uence the interaction

(among banks and with creditors) within the system and thereby improve overall e¢ ciency. In

fact, as we have shown, a small aggregate shock can trigger the ampli�cation mechanisms that

lead to aggregate liquidity shortage of the system, with the marginal bank threshold rising fromb�N to b�NB, which justi�es the ex post intervention. Regulators do not need to identify individual
vulnerable banks. They can simply o¤er liquidity assistance to all banks and the interbank market

will play a role of reallocating liquidity. This is di¤erent from the situation where the negative

shock is idiosyncratic, in which case regulators face the classic problem of information asymmetry

in deciding whether or not to bail out or give liquidity assistance to a certain bank � whether that

bank is illiquid or insolvent (see, e.g., Rochet and Vives (2004) and Brunnermeier et al. (2009)).
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In the recent crisis, the Federal Reserve created emergency liquidity facilities (e.g., the Asset-

Backed Commercial Paper Money Market Mutual Fund Liquidity Facility). Moreover, in the U.S.,

the Federal Reserve adopted an unconventional policy of credit easing through a combination of

lending to �nancial institutions, providing liquidity directly to key credit markets, and purchasing

long-term securities (Bernanke (2009)). Central banks in Europe and Japan used similar quantita-

tive easing policies.

Public disclosure Suppose that the central bank is informed of the asset quality of individual

banks in the system. The information may come from the supervisory knowledge of the central

bank as in Rochet and Vives (2004) or from crisis-time stress tests conducted by the central bank

as in Goldstein and Leitner (2013). We consider a simple public disclosure rule: the central bank

classi�es and discloses to the market a bank�s type � type A or type B.32 We show that there is

a unique optimal percentage of banks that the central bank should classify and disclose as type-A

banks in maximizing the aggregate bank value of the system.

Formally, after the public disclosure, each creditor of a bank has two pieces of information

based on which to make his rollover decision: public information (his bank�s type) and private

signal xij . Public information alters the prior distribution of � and thus the posterior conditional

density of �. Concretely, suppose that the central bank discloses � proportion of banks as type-A

banks. Then, a creditor of a type-A bank knows that his bank�s asset quality must satisfy � � �,

where �( ���B� ) = 1��. Thus, for the marginal creditor of a type-A bank, his posterior conditional

density hg(�jx�i) in (4a) is replaced by

ĥg(�jx�i) =
1
��(

���B
� )1��(

x�i��
� )

�=+1Z
�=�

1
��(

���B
� )1��(

x�i��
� )d�

for � � �. (7)

That is, ĥg(�jx�i) is a truncated conditional normal distribution due to the public disclosure. In

addition, it is easy to see that an optimal disclosure rule must be such that in equilibrium all type-B

32Considering only two types is without loss of generality. Considering more types would not change the model

result. In fact, the optimal disclosure rule that maximizes the number of banks surviving at T1 must be such that in

equilibrium all banks classi�ed as the highest ranking type survive while all other types of banks fail; so non-surviving

banks in equilibrium can belong to one type (e.g., �B�only) or more than one type (e.g., �B�, �C�,...), which does

not matter.
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banks fail while none or a fraction of type-A banks whose asset quality is in the lower range fail.

Hence, the following condition is true:

� � b�. (8)

The equilibrium at T1 under the shock (i.e., state s = B) with public disclosure is given by the

system of equations (4a)-(4b), (5a)-(5b) and (6) with constraint (8), where the allocation (c;R)

is (cN , RN ), the asset quality distribution g(�) in (5a) is replaced by gB(�), and the posterior

conditional density hg(�jx�i) in (4a) is replaced by (7). We have the following proposition.

Proposition 6 Public disclosure at T1 can increase the aggregate bank value of the system. There

exists a unique optimal � 2 (0; 1) in public disclosure.

Proof. See Appendix.

Public disclosure can improve welfare. The intuition is the following. Without public disclosure,

a creditor knows that his bank�s asset quality follows the prior distribution � � N(�B; �2). After

public disclosure, a creditor of a type-A bank knows that his bank�s asset quality belongs to the

top � (percentage) of the distribution � � N(�B; �2). In this sense, a creditor of such a bank has

received good news because his bank is �upgraded�(intuitively speaking, mean �B is improved).

Therefore, creditors of a type-A bank run less often (i.e., a lower x�) and consequently the marginal

bank threshold b� decreases; that is, the number of banks surviving at T1 increases. More concretely,
when � decreases (i.e., fewer type-A banks), the type-A threshold (�) increases while the marginal

bank threshold (b�) decreases. There is a unique � such that � and b� coincide, at which the aggregate
bank value is maximized.

The intuition for the existence of a unique optimal � is the following. If the government classi�es

and discloses too many banks as type-A banks, the disclosure itself would not be very informative;

creditors of a type-A bank will still run very often and thus there will still be a lot of banks failing

(among type-A banks). In the extreme case where � = 1, public disclosure would not change b�
in equilibrium at all and thus is useless. In contrast, if the government discloses too few type-A

banks, creditors of such a type-A bank will feel very secure and will be less likely to run; however,

type-A banks are far and few between in the market in the �rst place. Therefore, it is not optimal

for the government to disclose too many or too few type-A banks. In other words, there is a unique
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� that leads to an optimal degree of �pooling�to maximize the total number of banks surviving in

the system.

Our analysis of public disclosure intervention in this subsection is along the line of the work of

Goldstein and Leitner (2013), Vives (2014) and Bouvard et al. (2015), but o¤ers new insights. Our

analysis highlights the impact of public disclosure on creditor runs in the presence of an interbank

market.

7 Conclusion

This paper presents a model of interbank lending that helps explain a systemic crisis. On the

methodology side, we study global games in general equilibrium, so that we can explicitly model

a competitive interbank market, and examine how the interaction among creditors within a bank

a¤ects and is in turn a¤ected by other banks through the interbank market.

Our model demonstrates banking crises originating in fundamental shocks (i.e., aggregate shocks

to banks� asset quality) and shows the interplay between illiquidity risk and insolvency risk in

a �nancial system context. The paper highlights how the feedback between runs on �nancial

institutions and trade in the interbank market can amplify a small shock into a systemic crisis. A

crisis propagates in our model because institutions rely on short-term funding from the same pool.

We also examine how the ex post intervention measures of liquidity injections and public disclosure

can improve e¢ ciency.
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Appendix

A Equilibrium at T0

A. 1 Equilibrium at T0 without aggregate uncertainty

In this section, we study the equilibrium at T0; in doing so we will endogenize c and R. Since

banks are identical at T0, to reduce notational clutter, we drop the bank index superscript i in this

section, unless otherwise speci�ed.

We study the constrained second-best equilibrium. We state the equilibrium concept.

Constrained second-best equilibrium A constrained second-best equilibrium consists of

the following three elements:

(i) For a given (c;R) set at T0, the equilibrium outcome at T1 is (x�;b�; I).33
(ii) A creditor demands an interest rate R at T0 such that given (c;R) and the subsequent

equilibrium outcome (x�;b�; I), the creditor breaks even ex ante at T0.
(iii) Knowing the response of (R; x�;b�; I) to c, the social planner chooses an optimal c at T0 to

maximize the aggregate expected value of all banks in the economy.

Step 1: How R is determined

We work out the ex post payo¤ to a creditor in the creditor-run game. If a bank with funda-

mentals � fails at T1, the bank�s total asset is the cash c, which is divided among the creditors who

call. Hence, a creditor who calls obtains c

F �H(x���
�

)
by recalling that the proportion of creditors

calling is H(x
���
� ), and a creditor who does not call obtains 0. If a bank survives to T2, a number of

F �H(x���� ) creditors has called at T1, each of whom has obtained face value 1, while each staying

creditor�s expected payo¤ is �(�)R at T2.34

Thus, we can obtain the expected payo¤ to a creditor and thereby his ex ante participation

33 If there are multiple equilibria of (x�;b�; I) ex post at T1, agents anticipate that the e¢ cient (stable) equilibrium
will be selected. This is equivalent to there being an ex post regulatory intervention in place.
34Staying creditors make their claim on the 1�c units of the long-term risky asset. We will show that in equilibrium

(1� c)X > FR. So a staying creditor obtains R if and only if the long-term asset realizes its high state payo¤ X.
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condition at T0. That is,

R0 =

Z b�
�1

266664
Z x�

�1

c

F �H(x���i� )
� h(xij j�i)dxij| {z }

Call on failing bank

+

Z +1

x�
0 � h(xij j�i)dxij| {z }

Hold on failing bank

377775 g(�i)d�i

+

Z 1

b�

26664
Z x�

�1
1 � h(xij j�i)dxij| {z }

Call on surviving bank

+

Z +1

x�

�
R � �(�i)

�
� h(xij j�i)dxij| {z }

Hold on surviving bank

37775 g(�i)d�i. (A.1)

(A.1) gives the position for creditor j in bank i. Ex ante, at T0, this creditor faces two levels

of uncertainty: the quality of his bank and the signal that he will receive. The density g(�i)

represents the �rst level of uncertainty and the conditional density h(xij j�i) represents the second

level of uncertainty. The payo¤ in each scenario was explained in the previous paragraph.35

Equation (A.1) can be simpli�ed and rewritten as

R0 =

Z b�
�1
(
c

F
) � g(�)d� +

Z 1

b�
�
H(
x� � �
�

) � 1 +
�
1�H(x

� � �
�

)

�
� (R � �(�))

�
g(�)d�. (A.1�)

(A.1�) is very intuitive. Conditional on a bank�s failing, the expected payo¤ to a creditor is c
F .

This is because c will be distributed among the calling creditors while ex ante all creditors have

an equal chance of ending up as calling creditors; therefore, ex ante, this is equivalent to c being

distributed equally among a number of F creditors. Conditional on the bank�s surviving, with

probability H(x
���
� ), a creditor receives a bad signal and thus calls, in which case his payo¤ is 1;

with probability 1�H(x���� ), he receives a good signal and thus stays, in which case his expected

payo¤ is R � �(�).

For cleanness, we might explicitly add another constraint:

FR < (1� c)X: (A.2)

Constraint (A.2) gives a su¢ cient condition to guarantee that creditors are repaid with R (no

default) when the long-term asset realizes its high-state cash �ow X at T2. This condition, however,

35The four terms in (A.1) correspond to the four elements in Table 1. The di¤erence in payo¤s between Table 1

(under w0 = 1,  = 1 and no involvement of a fund manager) and (A.1) is minor. The participation condition (A.1)

is in terms of the gross payo¤ to a creditor. The idea is that when a creditor decides on his participation R, he

takes into account that his fund manager�s objective is not entirely aligned with his own. In particular, under the

assumption that w0 ! 0 and  ! 0, the net payo¤ to a creditor approaches his gross payo¤.
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is not necessary in general when the optimization problem, to be shown shortly, is taken into

account. That is, it is not optimal in equilibrium to choose too high a c.

Step 2: How c is determined

Now we study the decision of the social planner at T0, i.e., element (iii). The social planner�s

objective is to maximize the total social surplus. The social planner�s problem is

max
c

Z b�
�1
cg(�)d� +

Z 1

b� [c+ (1� c)(X � �(�))] g(�)d� (Program A1)

s.t. (4a)-(4b), (5a)-(5b), (6), (A.1�) and (A.2)

In Program A1, the objective function is to maximize the aggregate value of all banks in the

economy, including the failing banks at T1 (the �rst term) and surviving banks at T2 (the second

term). This aggregate value, in the end, is divided between the equityholders and creditors in the

economy (see the proof of Lemma 4 in Appendix C).36 Lemma 4 summarizes the result.

Lemma 4 The constrained second-best equilibrium solves Program A1, which gives ex ante (c,R).

The equilibrium exists.

Proof. See Appendix C.

We explain the intuition behind the optimal c in Lemma 4. A higher c results in more banks

surviving at T1 (i.e., a lower b�), but also less investment in long-term projects in the economy. The

tradeo¤ leads to an optimal liquidity ratio at T0. Speci�cally, denoting the aggregate bank value

by V in the objective function in Program A1, the �rst-order derivative of V is

@V

@c
=

(
(�@

b�
@c
) �
h
(1� c)(X � �(b�))g(b�)i)| {z }

more banks survive ex post

�
�Z 1

b� (X � �(�))g(�)d� � 1
�

| {z }
higher return of banks ex ante

.

The deadweight loss when a bank of quality � fails at T1 is (1 � c)(X � �(�)), so the gain from

having more banks survive in the economy by holding one more unit of cash at T0 is (�@b�
@c ) �h

(1� c)(X � �(b�))g(b�)i. On the other hand, storing cash for banks means that valuable investment
opportunities are wasted in the economy, with the loss being

Z 1

b� (X ��(�))g(�)d��1. The tradeo¤

36Program A1 is equivalent to maximizing the aggregate equity value. The equivalence is because creditors of a

bank, in total, claim a constant residual value, FR0.
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leads to an optimal level of cash holdings for banks at T0. Moreover, we show that under the

su¢ cient condition that � is small enough, the optimal c, as determined in Program A1, is such

that some banks will fail at T1 (i.e., b� > �1).
A. 2 Equilibrium at T0 with aggregate uncertainty

For a given (c;R) set at T0, the equilibrium at T1 under distribution gs is written as

(c; 1� c;R) gs�! (b�s; x�s; Is). (A.3)

With the two aggregate states at T1 (i.e., s = N and B), a creditor�s ex-ante participation

condition at T0 is given by

R0 =
X
s=N;B

qs

(Z b�s
�1
(
c

F
)gs(�)d� +

Z 1

b�s
�
H(
x�s � �
�

) � 1 +
�
1�H(x

�
s � �
�

)

�
(R � �(�))

�
gs(�)d�

)
(A.4)

and hence the constrained second-best equilibrium at T0 is given by

max
c

X
s=N;B

qs

"Z b�s
�1
cgs(�)d� +

Z 1

b�s [c+ (1� c)(X � �(�))] gs(�)d�
#

s.t. (A.2), (A.3) and (A.4) (Program A2)

where qN = q and qB = 1� q.

Lemma 5 With aggregate uncertainty, the constrained second-best equilibrium solves Program A2,

which gives ex ante (c,R). The equilibrium exists. When q ! 1, (c;R)!(cN ; RN ); when q ! 0,

(c;R)!(cB; RB).

Proof. See Appendix C.

Intuitively, agents are uncertain about the aggregate state at T1, so the ex-ante allocation (c;R)

is prepared for the �average�of the states of s = N and B. When the bad state (s = B) is rather

unlikely (i.e., 1�q is low), the ex ante allocation in equilibrium is largely based on the consideration

of the occurrence of state s = N .
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B Numerical example

We provide a numerical example to illustrate the main results of the model. The numerical example

is to illustrate the qualitative (rather than quantitative) aspect of the model.

We set the parameter values as follows: X = 8, F = 0:3, R0 = 1:03, w0 = 1, � = 0:2, � = 1,

� = 0:5, � = 1, � = 0:2, �� = 0:5, �� = 1. We assume that �U = 2:4, which corresponds to

�(�U ) = 97:7%. The endogenous variables in the model are (c;R; x�;b�; I).

Figure B-1: Aggregate bank value in the second-best equilibrium

The second-best equilibrium at T0 The aggregate bank value V in Lemma 4 is a �\�-shaped

function, as shown in Figure B-1. The optimal amount of cash holdings is c = 0:1287, at which

V = 3:9588, and R = 1:5961. Given the R, the upper dominance region for the creditor-run

equilibrium at T1 is [x�U ;+1) = [2:547;+1).

The creditor run-interbank market equilibrium at T1 Under c = 0:1287 and R = 1:5961 set

at T0, we can �nd a unique equilibrium at T1 (Proposition 2) in which x� = 0:5881, b� = �0:3986
or �(b�) = 34:75%, and I = 14:145. Note that x� 2 (�1; x�U ] and condition c � F �H(x���U� ) is

satis�ed.

Unique equilibrium at T1 under a shock Suppose the shock, � � �B, is small. Speci�cally,

let �B = �0:5. The new equilibrium is still unique (Proposition 4), in which x�NB = 0:6974,b�NB = 0:3085 or �(b�NB) = 53:93%, and INB = 22:945. Note that x� 2 (�1; x�U ] and condition
c � F �H(x���U� ) is satis�ed.
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Multiple (two) equilibria at T1 under a shock Suppose the shock, � � �B, is not small.

Speci�cally, let �B = �1. The new equilibrium is multiple (Proposition 5). For the lower (e¢ cient)

equilibrium, x�NB = 0:98, b�NB = 0:7032 or �(b�NB) = 66:44%, and INB = 31:4597. For the higher
(ine¢ cient) equilibrium, x�NB = 2:0340, b�NB = 1:8359 or �(b�NB) = 92:74%, and INB = 51:9671.

For both equilibria, x� 2 (�1; x�U ] and condition c � F �H(x���U� ) is satis�ed.

C Proofs

Proof of Lemma 1: The prior density of � is g(�) with distribution N(�; �2). The signal is

x� = � + ��, where � � N(0; 1). So, the posterior density hg(�jx�) is with distribution N( �
�+�� +

�
�+�x

�; 1
�+� ), where � = 1

�2
and � = 1

�2
. Let �� =

�
�+�� +

�
�+�x

� and �� =
q

1
�+� . Then,

hg(�jx�) = 1
��
�
�
����
��

�
.

By (2), we have b� = x� � ���1( cF ). So we can combine (1) and (2):
�=+1Z

�=x�����1( c
F
)

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�
�

q
1

�+�

1A d� = w0

: (C.1)

Write the LHS of (C.1) as function Y (x�; �).

The key to the proof is to determine the monotonicity of Y (x�; �) with respect to x�. Three forces

are at work in determining the monotonicity: i) the lower boundary of the integral, x�� ���1( cF ),

is increasing in x�, so Y (x�; �) tends to be decreasing in x�; ii) the conditional mean, �
�+��+

�
�+�x

�,

is increasing in x�, so Y (x�; �) tends to be increasing in x�; iii) �(�) is an increasing function, which

makes Y (x�; �) tend to be increasing in x�.

We conduct a transformation on Y (x�; �):

Y (x�; �) =

�=+1Z
�=x�����1( c

F
)

R � �(�) � 1
��
�

�
� � ��
��

�
d�

=

z=+1Z
z=

x�����1( c
F
)���

��

R � �(�� + ��z) � � (z) dz (changing variables to z =
� � ��
��

)

=

z=+1Z
z=

�
�+�

(x���)����1( c
F
)r

1
�+�

R � �
�
(
�

�+ �
�+

�

�+ �
x�) +

r
1

�+ �
z

�
� � (z) dz. (C.2)
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1) We consider the limiting case of � ! 0 for a given �. In this case, �
�+� ! 1. Hence, in

(C.1), the conditional mean, �
�+��+

�
�+�x

�, and the lower boundary of the integral, x�� ���1( cF ),

increase at the same speed. So Y (x�; �) is certainly increasing in x� since �(�) is an increasing

function. Concretely, under the limit � ! 0 for a given �, we have:

lim
�!0

Y (x�; �) = lim
�!0

0BBBBBB@
z=+1Z

z=
�

�+�
(x���)����1( c

F
)r

1
�+�

R � �
�
(
�

�+ �
�+

�

�+ �
x�) +

r
1

�+ �
z

�
� � (z) dz

1CCCCCCA
= R � �(x�) �

z=+1Z
z=���1( c

F
)

� (z) dz

= R � �(x�) � c
F
:

Thus (3) is obtained. (C.1) admits a unique solution with respect to x� (under proper parametric

values of c, F and R to make the research question interesting) because Y (x�; �) is monotonically

increasing in x�. Note that lim
�!0

Y (x�; �) = R � �(x�) � cF pointwise, not globally uniformly.

2) We consider the non-limiting case. We prove that when � is su¢ ciently small for a given �,

(C.1) also admits a unique solution with respect to x� in the interval x� 2 (�1; x�U ]. Note that

the assumed upper dominance region implies x� =2 (x�U ;+1). The proof has three steps.

First, we prove the following result: for any given bounded (�nite) interval around x� = ��,

denoted by [�� � l; �� + l], there exists a su¢ ciently small � > 0 such that when � < �, function

Y (x�; �) is monotonically increasing in the interval x� 2 [��� l; ��+ l]. Concretely, based on (C.2),

the �rst-order derivative of Y (x�; �) implies

@Y (x�; �)

@x�
=R = �

�
� + (� � �)�(

x� � ���1( cF )� ��
��

)

�
� �

0@ �
�+� (x

� � �)� ���1( cF )q
1

�+�

1A � �
�+�q
1

�+�| {z }
<0

+

z=+1Z
z=

�
�+�

(x���)����1( c
F
)r

1
�+�

(� � �)�

0@
�

�
�+��+

�
�+�x

�
�
+
q

1
�+� z � ��

��

1A �
�+�

��
� � (z) dz

| {z }
>0

:

(C.3)
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Note that when � ! 0, it follows that �
�+� ! 0, �

�+� ! 1, �q
1

�+�

! 1 and
�

�+�q
1

�+�

! 0. Hence, the

�rst term in (C.3) converges uniformly to 0 in any given bounded (�nite) interval x� 2 [���l; ��+l]

when � ! 0. In fact, in the �rst term in (C.3),
�

�+�q
1

�+�

! 0 when � ! 0, while �(
�

�+�
(x���)����1( c

F
)q

1
�+�

)

is bounded and approaches �(���1( cF )) when � ! 0. The second term in (C.3) is bounded from

below by a positive value for any given �nite interval x� 2 [�� � l; �� + l]. Therefore, we can �nd a

su¢ ciently small � > 0 to make sure that when � < � the �rst term of @Y (x
�;�)

@x� in (C.3) is su¢ ciently

close to 0 so that the second term of @Y (x
�;�)

@x� dominates the �rst term. That is, @Y (x
�;�)

@x� > 0.

Second, let the arbitrarily chosen interval [�� � l; �� + l] be [L; x�U ], where L is low (such as

L = �� � 10��). Based on the result in the �rst step, there exists a su¢ ciently small � > 0 such

that when � < �, equation Y (x�; �) = w0
 has a unique solution with respect to x� in x� 2 [L; x�U ].

This is because Y (x�; �) is monotonically increasing in x�.

Third, for the chosen L in the second step, we show that under a su¢ ciently small �, equation

Y (x�; �) = w0
 has no solutions in the interval x� 2 (�1; L). In fact, we can de�ne an upper bound

function of Y (x�; �), denoted by Y (x�; �):

Y (x�; �) �
�=+1Z
�=�1

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�
�

q
1

�+�

1A d�:
Y (x�; �) is increasing in x�. Hence, in the interval x� 2 (�1; L], it follows that Y (x�; �) �

Y (x�; �) � Y (L; �). Considering that Y (L; �) is close to being R � �(L) when � is small and is thus

close to being R� , equation Y (x�; �) = w0
 has no solutions.

3) We prove that the unique equilibrium is also a stable equilibrium. In a stable equilibrium,

the best response function (of an individual creditor to its peers) intersects the 450 line at a slope

of less than 1. Let an individual creditor�s threshold be x�j and that of his peers be x�. Then

�=+1Z
�=x�����1( c

F
)

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�j
�

q
1

�+�

1A d� = w0

:

Write the LHS as function Y (x�; x�j). Applying the implicit function theorem, we have @x�j

@x� =

� @Y=@x�

@Y=@x�j . Based on the results in 1) and 2), Y is an increasing function around the solution; that

is, Y (x� +4; x�j +4) � Y (x�; x�j) > 0 for a small positive 4. So ( @Y@x� +
@Y
@x�j )4 > 0, and thus

@Y
@x�j > �

@Y
@x� > 0. Therefore,

@x�j

@x� < 1.
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4) We prove the comparative statics @x
�

@c < 0 and
@x�

@R < 0. Write the LHS of (C.1) as function

Y (x�; c;R). Clearly, @Y@c > 0 while
@Y
@x� > 0. So

@x�

@c = �
@Y=@c
@Y=@x� < 0. Similarly,

@x�

@R < 0.

Proof of Lemma 3: We �rst prove Lemma 3 and Proposition 2 then prove Lemma 2 and

Corollary 1.

1) We analyze (5a), which can be rewritten as

c =

Z 1

b� F � �(x���� ) 1��(
���
� )d�Z 1

b� 1
��(

���
� )d�

. (C.4)

Write the RHS of (C.4) as a function with respect to b� parameterized by x�, denoted by f(b�;x�).
The �rst-order derivative of f(b�;x�) implies

sgn

�
@f

@b�
�

= sgn

 Z 1

�=b�
"
�(
x� � �
�

)� �(x
� � b�
�

)

#
1

�
�(
� � �
�

)d�

!
= �1,

where the second equality is because �(x
���
� ) is decreasing in �. So f(b�;x�) is decreasing in b� (for

a given x�), and it peaks at b� = �1. Therefore, when c � f(b� = �1;x�), equation (5a) has a

unique solution with respect to b� for a given x�. Denote the solution by b�(x�;�; c), which is clearly
decreasing in c. In fact,

@f

@b� < 0 =) @b�
@c
< 0.

2) We prove the comparative statics @b�
@� < 0 and

@b�
@x� > 1 for solution

b�(x�;�; c) given by (5a).
We proceed in three steps.

Step 1: De�ne function f (t;�; x�) �

Z 1

�=t
F ��(x

���
�

) 1
�
�( ���

�
)d�Z 1

�=t

1
�
�( ���

�
)d�

. Transform it to

f (t;�; x�) =

Z 1

z=0
F � �(x

��(t+z)
� ) 1��(

(t+z)��
� )dzZ 1

z=0

1
��(

(t+z)��
� )dz

(changing variables to z = � � t)

=

Z 1

z=0
F � �(x

� � (t+ z)
�

)
1
��(

(t+z)��
� )

1� �
� t��
�

� dz:
Note that

1
�
�(

(t+z)��
�

)

1��( t��� )
= d

�( t��
�
+ z
�
)

1��( t��� )
=dz is a truncated normal density function with respect to z.
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Step 2: We prove the following general property for the truncated normal density: for the trun-

cated normal density '(t; a) = �(a+t)
1��(a) with t � 0, distribution '(t; a

0) has �rst-order stochastic dom-

inance over distribution '(t; a00) for a0 < a00. To see this, denote the c.d.f by 	(t; a) = �(a+t)��(a)
1��(a) .

We need to prove that @	(t;a)@a > 0 for every t. This is true because

@	(t; a)

@a
=

�
� (a+ t)

1� � (a+ t) �
�(a)

1� �(a)

�
[1� � (a+ t)]
1� �(a) > 0,

where the inequality follows by the monotone hazard rate (MHR) of the normal distribution.

Step 3: Letting t = b�, equation (C.4) becomes f �b�;�; x�� = c. By the implicit function

theorem,

@b�
@x�

= � @f
@x�

=
@f

@b�
=

Z 1

z=0
F � 1��(

x��(b�+z)
� )

1
�
�(
(b�+z)��

�
)

1��
�b���

�

� dz
Z 1

z=0
F � 1��(

x��(b�+z)
� )

1
�
�(
(b�+z)��

�
)

1��
�b���

�

� dz �
Z 1

z=0
F � �(x

��(b�+z)
� )

@
1
� �(

(b�+z)��
� )

1��
�b���

�

�
@b� dz

> 1.

The denominator in the second line is positive by @f

@b� < 0 shown in 1). Its second term is also

positive. This is because function �(
x��(b�+z)

� ) is decreasing in z while density function
1
�
�(

(b�+z)��
�

)

1��
�b���

�

�
with respect to z has the property of �rst-order stochastic dominance when b� decreases as shown
in Step 2. So we obtain the result of @b�

@x� > 1. Similarly, we can con�rm that

@b�
@�

= �@f
@�
=
@f

@b� = 1� @b�
@x�

< 0.

3) We analyze (5b). Since (5a) gives a unique b� for a given x�, then I is unique by (5b). We
conduct comparative statics on I. Denote H(x

��b�
� ) by y in (5b). So (5b) can be written as

I =
(1� c)X �R � F � (1� y)

F � y � c �(b�): (C.5)

Clearly, in (C.5), @I
@b� > 0. We also prove that @I@y < 0. In fact,

@I

@y
= F

[FR� (1� c)X]�Rc
(F � y � c)2 �(b�) < 0,

where the inequality is due to (A.2).
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Combining (5a) and (5b), we show the overall comparative statics @I
@x� > 0 and

@I
@� < 0. Consider

�rst @I
@x� > 0. An increase in x� leads to b� increasing and y decreasing because @b�

@x� > 1 in (5a),

which form two forces in (C.5) that drive up I. Now consider @I
@� < 0. A decrease in � leads to

b�
increasing in (5a), so in (C.5) b� increases and y decreases; both forces drive up I.
Proof of Proposition 2: Because of the symmetric equilibrium (x�i = x�) and because there is

a continuum of i.i.d. banks in the system, in equilibrium the following is true:

b� = b�i.
So (4a) becomes Z 1

b� (R � �(�)) � hg(�jx�)d� =
w0

. (C.6)

(5a) gives a unique b� for a given x� (see the proof of Lemma 3); denote the solution by b�(x�;�; �).
Hence, (C.6) becomes

�=1Z
�=b�(x�;�;�)

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�
�

q
1

�+�

1A d� = w0

: (C.7)

Write the LHS of (C.7) as function Y (x�;�; �). Equation (5b) is rewritten as

I =

h
(1� c)X �R � F �

�
1�H(x��b�� )

�i
�(b�)

F �H(x��b�� )� c
. (C.8)

1) We �rst consider the limiting case of � ! 0 for a given �. Under the limit, the limiting

function lim
�!0

H(x
���
� ) =

8>>><>>>:
1 when � < x�

[0; 1] when � = x�

0 when � > x�

. Hence, (5a) can be transformed into

Z 1

�=b�cg(�;�)d� =
Z 1

�=b�F �H(
x� � �
�

)g(�;�)d�

) c

"
1� �(

b� � �
�

)

#
= F

"
�(
x� � �
�

)� �(
b� � �
�

)

#

) �(
b� � �
�

) =
F � �(x

���
� )� c

F � c ,

which implies b� < x�. (C.9)
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We write lim
�!0

b�(x�;�; �) = x� �m(x�;�), where m(x�;�) > 0 measures the gap between x� and b�
(independent of �). With (C.9), (C.7) becomes

Y (x�) = R � �(x�) = w0

;

which clearly has a unique solution with respect to x�. Note that lim
�!0

Y (x�;�; �) = R � �(x�)

pointwise. A borrowing bank � 2 [b�; x�) faces withdrawals by all its creditors whereas a lending
bank � 2 [x�;+1) has no creditors withdrawing. By (C.8), it follows that

I =
(1� c) �X�(b�)

F � c .

In the presence of an interbank market, b� (or b�i) and x� do not coincide when � ! 0. This is

because a bank can survive even if none of its creditors rolls over as long as it can raise no less

than F amount of cash (including the funding from the interbank market by collateralizing its cash

�ow C(�;x�) at T2). In fact, for a borrowing bank � 2 [b�; x�), it is true that c+ C(�;x�)
I � F , where

C(�;x�) = (1� c) �X�(�).

2) We consider the non-limiting case. We prove that when � is su¢ ciently small for a given

�, (C.7) admits a unique solution with respect to x� in the interval x� 2 (�1; x�U ]. The proof is

similar to the proof of Lemma 1 with three steps.

First, we prove the following result: For any given bounded (�nite) interval around x� = ��,

denoted by [�� � l; �� + l], there exists a su¢ ciently small � > 0 such that when � < �, function

Y (x�;�; �) is monotonically increasing in the interval x� 2 [�� � l; �� + l]\D, where D denotes the

domain of function b�(x�;�; �) with respect to x�.
Based on the result in 1), we write the solution to (5a) in the non-limiting case as

b�(x�;�; �) = lim
�!0
b�(x�;�; �) + o(x�;�; �)

= x� �m(x�;�) + o(x�;�; �);

where lim
�!0

o(x�;�; �) = 0. Now the gap is x�� b�(x�;�; �) = m(x�;�)� o(x�;�; �). Paralleling (C.2)
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by changing variables to z = ����
��
, function Y in (C.7) is rewritten as

Y (x�;�; �) =

z=+1Z
z=

b�(x�;�;�)���
��

R � �
�
(
�

�+ �
�+

�

�+ �
x�) +

r
1

�+ �
z

�
� � (z) dz

=

z=+1Z
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�
�+�
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�+�
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�

�+ �
x�) +

r
1

�+ �
z

�
� � (z) dz:

The �rst-order derivative of Y (x�;�; �) implies

@Y (x�;�; �)

@x�
=R =

�
h
� + (� � �)�(x

��m(x�;�)+o(x�;�;�)���
��

)
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+
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� � (z) dz
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:

(C.10)

We prove that the �rst term in (C.10) converges uniformly to 0 in any given bounded (�nite)

interval x� 2 [���l; ��+l] when � ! 0. Because @b�
@x� > 1 (see the proof of Lemma 3), it is true that

@
@x� [x

� � b�(x�;�; �)] = @
@x� [m(x

�;�)� o(x�;�; �)] < 0, implying that the gap m(x�;�)� o(x�;�; �)

is decreasing in x� and is smallest at x� = �� + l. Considering
�
�+� ! 0 and lim

�!0
o(x�;�; �) = 0,

then for any arbitrarily small % > 0, when � is su¢ ciently small, it follows that �
�+� (x

� � �) �

[m(x�;�)� o(x�;�; �)] � �m(x� = �� + l;�) + % for x
� 2 [�� � l; �� + l]. This in turn implies

that the term �(
�

�+�
(x���)�[m(x�;�)�o(x�;�;�)]q

1
�+�

) in the �rst line of (C.10) converges uniformly to 0 in

the interval x� 2 [�� � l; �� + l] when � ! 0. So does the �rst term in (C.10) by noting that the

additional term
�

�+�q
1

�+�

! 0 when � ! 0.

The second term in (C.10) is bounded from below by a positive value for any given �nite interval

x� 2 [��� l; ��+ l]. Therefore, we can �nd a su¢ ciently small � > 0 to make sure that when � < �

the �rst term of @Y (x
�;�;�)

@x� in (C.10) is su¢ ciently close to 0 so that the second term of @Y (x
�;�;�)

@x�

dominates the �rst term. That is, @Y (x
�;�;�)

@x� > 0.

48



The second and third steps are identical to those in the proof of Lemma 1.

3) The unique equilibrium is also a stable equilibrium. The proof is the same as that of Lemma

1.

Proof of Proposition 3: 1) We show that when � is high enough (for a given �), (C.7) admits

multiple solutions with respect to x� in the interval x� 2 (�1; x�U ].

First, we prove that for any given �
� > 0, lim

x�!1
Y (x�;�; �) � 0. We consider an upper bound

function of Y (x�;�; �), denoted by Y (x�;�; �):

Y (x�;�; �) �
�=+1Z

�=b�(x�;�;�)
R � � � 1q

1
�+�

�

0@� �
�

�
�+��+

�
�+�x

�
�

q
1

�+�

1A d�
= R � ��

0@
�

�
�+��+

�
�+�x

�
�
� b�(x�;�; �)q

1
�+�

1A .
Because @b�

@x� > 1 and �
�+� < 1, we have �

�+�� +
�

�+�x
� � b�(x�;�; �) ! �1 when x� ! 1, so

lim
x�!1

Y (x�;�; �) = 0. Hence, lim
x�!1

Y (x�;�; �) � 0. Note that lim
�!0

Y (x�;�; �) = R � �(x�) pointwise

(see the proof of Proposition 2), not globally uniformly.

The derivative �0(�) achieves its maximum at � = �� by �
0(�)j�=�� = (� � �)�(0)

1
��
. Around

x� = ��, we have Y (x
�;�; �) > w0

 (under proper parametric values of c, F and R to make

the research question interesting). Clearly, when x� is small enough, Y (x�;�; �) < w0
 . There-

fore, equation Y (x�;�; �) = w0
 admits multiple solutions. In particular, when �

� is high enough,

Y (x�;�; �) = w0
 admits multiple solutions in interval x� 2 (�1; x�U ]. To see this, �

�+� is decreas-

ing in �
� , so when

�
� is higher, the conditional mean,

�
�+��+

�
�+�x

�, increases more slowly with x�;

thus Y (x�;�; �) starts to decline at a lower x�.

In fact, Y (x�;�; �) is typically �\�- shaped in the relevant region of x� (i.e., increasing �rst and

then decreasing in x�), in which case equation Y (x�;�; �) = w0
 can have two solutions; one solution

is around ��, denoted by x
�
L, and the other is higher, denoted by x

�
H . The numerical simulation

con�rms the �\�-shape of function Y (x�;�; �). Figure 5 in the text plots how Y (x�;�; �) evolves

when � changes.

2) We prove that the lower solution to Y (x�) = w0
 corresponds to a stable equilibrium whereas

the higher solution corresponds to an unstable equilibrium. Let an individual creditor�s threshold

49



be x�j and that of its peers be x�. So (C.7) can be rewritten as

�=+1Z
�=b�(x�;�;�)

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�j
�

q
1

�+�

1A d� = w0

:

Write the LHS as the function Y (x�; x�j). Based on the result in 1), Y (x�) is an increasing function

at the lower solution x� = x�L and a decreasing function at the higher solution x
� = x�H . That is, at

(x�; x�j) = (x�L; x
�
L), we have Y (x

� +4; x�j +4)� Y (x�; x�j) > 0 for a small positive 4 and thus

@x�j

@x� = �
@Y
@x� =

@Y
@x�j < 1. Similarly, at (x

�; x�j) = (x�H ; x
�
H), we have Y (x

�+4; x�j+4)�Y (x�; x�j) <

0 for a small positive 4 and thus @x
�j

@x� = �
@Y
@x� =

@Y
@x�j > 1.

3) The equilibrium of (x�; x�j) = (x�H ; x
�
H) is Pareto-dominated by the equilibrium of (x

�; x�j) =

(x�L; x
�
L) because b�H > b�L. In fact, by @b�

@x� > 0 and
@I
@x� > 0 (see the proof of Lemma 3), it follows

that b�H > b�L and IH > IL.
Proof of Lemma 2: Because x�i = x� in (6) under the symmetric equilibrium, we can replace

x�i with x� in (4a) and (4b).

1) We de�ne function �(�;x�; I) � c+ C(�;x�)
I � F �H(x���� ) or

�(�;x�; I) = c+

�
(1� c)X �R � F �

�
1� �(x���� )

��
�(�)

I
� F � �(x

� � �
�

).

So equation (4b) is expressed as �(b�i;x�; I) = 0. We are interested in and focus on the case in

which the bank survives if and only if its asset quality is above a threshold. We �nd a su¢ cient

condition to guarantee this � the condition under which the function �(�;x�; I) is increasing in �.

The �rst-order derivative of �(�;x�; I) with respect to � is

@�(�;x�; I)

@�
=

�
(1� c)X �R � F �

�
1� �(x���� )

��
�0(�)

I
+
F

�
� �(x

� � �
�

)

�
1� R � �(�)

I

�
:

Thus, a su¢ cient condition for @�(�;x
�;I)

@� > 0 is I > R� by noting that �(�) � � for any � and thus

the second term is positive whereas the �rst term is also positive by (A.2). Under the su¢ cient

condition of I > R�, we also have

@�(�;x�; I)

@x�
= �F

�
� �(x

� � �
�

)

�
1� R � �(�)

I

�
< 0.

In addition, it is straightforward to show @�(�;x�;I)
@I < 0.
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Note that when creditors play the creditor-run game, they form an expectation on I and takes

it as given and they also know R (which is set at T0). We focus on the case where in the full

equilibrium of the model it is true that I > R�. Non-restrictive parameter values (e.g., � is small

enough and X is big enough by recalling equilibrium condition FR < (1 � c)X in (A.2)) can

guarantee that I > R� in the full equilibrium. The numerical example in Appendix B illustrates

one case under a set of parameter values.

2) We prove that the equilibrium is unique when �
� is small enough. Equation (4b) gives a

unique b�i for a given x� and I; denote the solution by b�i(x�; I). By applying the implicit function
theorem to equation �(b�i;x�; I) = 0, we have @b�i

@I = �
@�=@I

@�=@b�i > 0 and
@b�i
@x�

= � @�=@x�

@�=@b�i 2 (0; 1] .
This result is stronger than its counterpart in Lemma 1 where @b�

@x� = 1, so the unique threshold

equilibrium is more likely here than in Lemma 1. Concretely, (4a) becomes

�=+1Z
�=b�i(x�;I)

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�
�

q
1

�+�

1A d� = w0

: (C.11)

Write the LHS of (C.11) as function Y (x�; I). Paralleling (C.2) by changing variables to z = ����
��
,

function Y in (C.11) is rewritten as

Y (x�; I) =

z=+1Z
z=

b�i(x�;I)�( �
�+�

�+
�

�+�
x�)r

1
�+�

R � �
�
(
�

�+ �
�+

�

�+ �
x�) +

r
1

�+ �
z

�
� � (z) dz .

The �rst-order derivative of Y (x�; I) implies
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@Y (x�;�; �)

@x�
=R =

��
 
( �
�+��+

�
�+�x

�) +
q

1
�+�

b�i(x�;I)�( �
�+�

�+ �
�+�

x�)q
1

�+�

!

��
 b�i(x�;I)�( �

�+�
�+ �

�+�
x�)q

1
�+�

!
�

@b�i
@x��

�
�+�q
1

�+�| {z }
+=�

+

z=+1Z
z=

b�i(x�;I)�( �
�+�

�+
�

�+�
x�)r

1
�+�

(� � �)�

0@
�

�
�+��+

�
�+�x

�
�
+
q

1
�+� z � ��

��

1A �
�+�

��
� � (z) dz

| {z }
>0

:

(C.12)

In the �rst term of (C.12), @
b�i
@x� � 1 while

�
�+� ! 1 when � ! 0. So, either @b�i

@x� = 1 in which case

the term
@b�i
@x��

�
�+�q
1

�+�

! 0 when � ! 0, or @
b�i
@x� < 1 in which case

@b�i
@x��

�
�+�q
1

�+�

< 0 when � ! 0. Therefore,

similar to the proof of Lemma 1, there exists a su¢ ciently small � > 0 such that when � < �,

function Y (x�; I) is monotonically increasing in any given �nite interval x� 2 [�� � l; �� + l]. By

using the second and third steps in the proof of Lemma 1, we have the overall result that when �
�

is small enough, equation Y (x�; I) = 0 admits a unique solution with respect to x� in the interval

x� 2 (�1; x�U ].

3) We prove the comparative statics @x
�

@I > 0 for a stable equilibrium. As shown in the proofs

of Lemma 1 and Proposition 3, a stable equilibrium corresponds to Y (x�; I) being increasing in

x�; that is, @Y (x
�;I)

@x� > 0. Since @b�i
@I > 0, it is easy to prove that @Y (x�;I)

@I < 0. Therefore, @x
�

@I =

� @Y (x�;I)=@I
@Y (x�;I)=@x� > 0.

Proof of Corollary 1: From Lemma 2, (4a)-(4b) give x�i for each expectation of I. By (6),

x�i = x�. So (4a)-(4b) and (6) together give x� for each expectation of I. By Lemma 3, (5a)-(5b)

determine a unique I for a given x� . Therefore, the creditor run-interbank market equilibrium at

T1 is characterized by the �xed point problem between x�(I) and I(x�;�).

Proof of Corollary 2: Rewrite (C.7) as

�=+1Z
�=b�(x�;�;�;�;c)

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�
�

q
1

�+�

1A d� = w0

:
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Write LHS as function Y (x�;�; �; �; c). Considering that @b�
@� < 0 and @b�

@c < 0 (see the proof of

Lemma 3), we have @Y (x�;�;�;�;c)
@� > 0 and @Y (x�;�;�;�;c)

@c > 0. Hence, when � or c decreases, the

curve of Y (x�;�; �; �; c) shifts downward. Thus, the larger solution to equation Y (x�;�; �; �; c) =

w0
 becomes smaller and consequently is more likely to fall below x�U . That is, the existence of a

second (unstable) equilibrium becomes more likely.

Figure C-1 plots Y (x�;�; �; �; c) when � changes (where parameter values except � are the ones

in the numerical example in Appendix B).

Figure C-1: Function Y (x�;�; �; �; c) when � changes

Proof of Proposition 4: Based on the proof of Proposition 2 and Corollary 2, when the shock,

� � �", is small, the new equilibrium is also unique. Write the solution in (4a)-(4b) and (6) as

the reaction function x�(I;�), where � is public information. For a stable equilibrium given by

(4a)-(4b), we have shown that @x
�

@I > 0 and it is easy to show that
@x�

@� < 0. We write the solution

in (5a)-(5b) as the reaction function I(x�;u) where � is the mean of the asset quality distribution.

We have shown that @I
@x� > 0 and @I

@� < 0. Therefore, a negative shock of � leads to x� and I

spiraling upward. Certainly, b�NB > b�N , x�NB > x�N and INB > IN .
Proof of Proposition 5: Based on Propositions 2 and 3 and Corollary 2, the proof is straight-

forward.

Proof in the subsection on liquidity injections in Section 6: We prove that the pure

promise of bailout in our model cannot achieve the same e¤ect of deposit insurance in Diamond
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and Dybvig (1983) as a costless solution to liquidity crises.

In our model, the banks have insolvency issues at T2 (i.e., the long-term asset of a bank pays 0

or X). So it is impossible for the government to insure creditors�payo¤R at T2 always without an

actual bailout. Therefore, the government can at most insure creditors�payo¤, 1, at T1. Now we

show that such an insurance necessarily requires some actual liquidity injections of the government.

Suppose creditors of a bank believe that their bank will always survive to T2 and has no interim

illiquidity risk (coordination risk) at all at T1 (i.e., b� = �1). Then they use the lowest rollover

threshold x� = x, where x solvesZ 1

�1
(R) � �(�) � hg(�jx� = x)d� = w0:

Given x� = x, a bank of quality � needs liquidity in amount of F � H(x��� ) at T1 to satisfy its

creditors�withdrawals. If the bank does not actually need the government�s liquidity support and

has enough liquidity of its own, it requires

c � F �H(x� �
�
),

which is not true for a su¢ ciently small �. In other words, even if creditors feel very secure and set

x� = x (the lowest threshold possible), it is impossible for all banks to satisfy their creditors�early

withdrawals on their own. Some banks must actually rely on the government�s liquidity support. In

fact, only if the government promises and commits to supporting a subset of banks of high quality

such as � 2 [�U ;1] will the bailout not actually be needed in equilibrium, which is the case of the

upper dominance region.

Proof of Proposition 6: With public disclosure, the equilibrium at T1 under the shock (i.e.,

state s = B) is given by the system of equations (4a)-(4b), (5a)-(5b) and (6), where the allocation

(c;R) is (cN , RN ), the asset quality distribution g(�) in (5a) is replaced by gB(�), and the posterior

conditional density hg(�jx�i) in (4a) is replaced by (7).

Hence, based on (C.7) in the proof of Proposition 2, the equilibrium at T1 under public disclosure

is given by
�=1Z

�=b�(x�;�;�)
R � �(�) � ĥg(�jx�; �)d� =

w0


(C.13)
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where

ĥg(�jx�; �) =
1
��(

���B
� )1��(

x���
� )

�=+1Z
�=�(�)

1
��(

���B
� )1��(

x���
� )d�

=

1q
1

�+�

�
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q
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�+�

!

�
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�+�
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�+�

x�
�
��(�)q

1
�+�

! for � � �(�)

and �(�) is the solution to �( ���B� ) = 1� �. Clearly, when � = 1 or � = �1, ĥg(�jx�; �) becomes

hg(�jx�).

Write the LHS of (C.13) as function Y (x�;�; �; �). We prove that @Y
@x� > 0 in the lower equi-

librium and @Y
@� < 0. It is straightforward to see @Y

@� < 0. Based on the proof of Proposition 2,

to prove @Y
@x� > 0 is to prove that distribution ĥg(�jx

�
1; �) has �rst-order stochastic dominance over

distribution ĥg(�jx�2; �) for x�1 > x�2. Denote the c.d.f. of ĥg(�jx�; �) by Ĥg(�jx�; �) and thus

Ĥg(�jx�; �) =
�

 
��
�

�
�+�

�B+
�

�+�
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�

q
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�+�

!
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�+�
�B+
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�+�
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q
1

�+�

! for � � �(�).

Hence, we need to prove @Ĥg(�jx�;�)
@x� < 0 for every �. This is true because

sgn

 
@Ĥg(�jx�; �)

@x�

!
= sgn

266664
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�+�

�B+
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�+�
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�

q
1

�+�

!
377775

= �1,

where the second line follows by the monotone hazard rate (MHR) of the normal distribution.

Therefore, by the implicit function theorem, @x
�

@� = �
@Y
@� =

@Y
@x� > 0. Based on the proof of Lemma

3, @b�
@x� > 0. Hence @b�

@� > 0. When � starts from 1 and decreases, b� decreases while � increases.
Considering the constraint � � b�, there is a unique � such that � and b� coincide, at which b� is
minimized.

Proof of Lemma 4: 1) We work out the ex post payo¤ to the equityholder (of the equilibrium

outcome) in the creditor-run game. The ex post payo¤ to the equityholder in a bank of quality �

at T1 is calculated as follows. If the bank fails (i.e., � < b�) at T1, its equityholder gets nothing. If
55



the bank survives (i.e., � � b�) at T1, the equityholder�s payo¤ includes his claim on the long-term

asset as well as his position in the interbank market as follows:�
c� F �H(x

� � �
�

)

�
I| {z }

Gain or loss in interbank market

+

�
(1� c)X �R � F �

�
1�H(x

� � �
�

)

��
�(�)| {z }

Payo¤ in risky investment

: (C.14)

(C.14) is easy to understand based on Figure 4. The �rst term, which can be positive (i.e., for

lending) or negative (i.e., for borrowing), is the bank�s gain or loss in the interbank market, and the

second term is the expected payo¤ of its long-term asset net of the claim by its staying creditors.

In fact, for the marginal bank with � = b�, the equity value in (C.14) is exactly equal to 0. A bank
of quality � > b� has a positive expected equity value.

We illustrate that the aggregate value in the objective function of Program A1 is equal to the

sum of the equityholder�s payo¤ across banks in (C.14) plus the sum of debtholders�payo¤s across

banks on the RHS of (A.1�). By (C.14), the aggregate equity value isZ 1

b�
��
c� F �H(x

� � �
�

)

�
I +

�
(1� c)X �R � F �

�
1�H(x

� � �
�

)

��
�(�)

�
g(�)d�

=

Z 1

b�
�
(1� c)X �R � F �

�
1�H(x

� � �
�

)

��
�(�) � g(�)d� (C.15)

The second line in the above is obtained because the �rst term in the �rst line is cancelled out by

(5a), i.e.,
Z 1

b� cg(�)d� =

Z 1

b� F �H(x���� )g(�)d�. Intuitively, the gains and losses in the interbank

market across banks cancel each other out. By (A.1�), the aggregate debt value isZ b�
�1
c � g(�)d� +

Z 1

b�
�
F �H(x

� � �
�

) +R � F �
�
1�H(x

� � �
�

)

�
� �(�)

�
g(�)d� (C.16)

Therefore, the aggregate value in the economy is the sum of the terms of (C.15) and (C.16), which

by using (5a) again becomesZ b�
�1
c � g(�)d� +

Z 1

b� [c+ (1� c) (X � �(�))] g(�)d�.

2) We turn to Lemma 4. First, for a given c, the system of equations (4a)-(4b), (5a)-(5b), (6)

and (A.1�) determines the vector (R;b�; x�; I). In fact, based on Propositions 2 and 3, for a given c
and R, the pair (x�;b�) is determined. Plugging functions x�(c;R) and b�(c;R) into (A.1�), we can
solve equation (A.1�) with respect to R. Overall, we can �nd b� as a function of c.

Second, by plugging the function of b�(c) into the bank value (denoted by V ) in the objective
function in Program A1, we obtain V as a function of c. Because all functions are continuous, the

optimization of V on the close set [0; 1] clearly has solutions.
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Third, for typical cases (to make the research questions interesting), the optimal c cannot be

such that b� = �1. Denote by �c the cash holdings to achieve b� = �1. We prove that @V@c jc=�c < 0.
In fact,

@V

@c
jc=�c =

"
(1� c)(X � �(b�))dG(b�)

dc

#
j
c=�c; b�=�1 �

�Z 1

�1
(X � �(�))g(�)d� � 1

�

=

"
(1� c)(� �X)dG(

b�)
dc

#
j
c=�c; b�=�1 �

�
� + �

2
X � 1

�
.

When � ! 0, the �rst term in the second line above approaches 0, in which case @V
@c jc=�c < 0 for

�+�
2 X � 1 > 0. Note that we assume

Z 1

�1
[X � �(�)] g(�)d� > R0 where R0 � 1, which means that

�+�
2 X > 1. Therefore, under the su¢ cient condition that � is small enough, @V@c jc=�c < 0.

Proof of Lemma 5: The proof is similar to the Proof of Lemma 4. First, for a given c, the

system of equations (A.3) and (A.4) determines the vector (R;b�s; x�s; Is) for s = N and B. In fact,

based on Propositions 2 and 3, for a given c and R, the pair (x�s;b�s) is determined under a realized
state s. Plugging functions x�s(c;R) and b�s(c;R) for s = N and B into (A.4), we can solve equation

(A.4) with respect to R. Overall, we can �nd b�s as a function of c.
Second, by plugging the function of b�s(c) into the bank value (denoted by V ) in the objective

function in Program A2, we obtain V as a function of c. Because all functions are continuous,

the optimization of V on the close set [0; 1] clearly has solutions. Also, because all functions are

continuous and bounded, we have that when q ! 1, (c;R)!(cN ; RN ) and that when q ! 0,

(c;R)!(cB; RB).

D More explanations

D. 1 Alternative assumption on debt seniority

We show that under the alternative assumption that interbank lenders are senior to depositors

(creditors), the equilibrium at T1 does not change qualitatively. First, for the creditor-run equilib-
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rium of an individual bank, (4a)-(4b) is replaced by (D.1)-(D.2)

Z b�i
�1
0 � hg(�jx�i)d� +

Z 1

b�i min

2664(1� c)X �
h
F �H(x

�i��
�

)�c
i
I

�(�)

F �
�
1�H(x�i��� )

� ; R

3775�(�)hg(�jx�i)d� = w0


(D.1)

[(1� c)X]�(b�i)
I

+ c = F �H(x
�i � b�i
�

). (D.2)

The comparative statics result @x�i

@I � 0 still holds. In fact, a higher I not only makes the bank

less liquid at T1 (i.e., a higher b�i) but also results in less value left for the staying creditors because
the interbank repayment is senior; the two forces lead to a higher x�i. Second, for the interbank

market equilibrium, (5a)-(5b) do not change.

D. 2 Comparison between autarky and the presence of an interbank market

The presence of an interbank market (versus autarky) a¤ects not only the equilibrium at T1 but

also the allocation (c;R) at T0 in the �rst place. In what follows, we show: 1) the presence of

an interbank market leads to ex-post better liquidity sharing. So if an e¢ cient equilibrium ex

post at T1 is always selected (e.g., with ex-post regulation), the existence of an interbank market

dominates autarky in improving the overall welfare; 2) however, because of the ex-post better

liquidity sharing, the ex-ante allocation (c;R) becomes more �aggressive� in the sense that c is

lower in the presence of an interbank market than in autarky. This, together with the higher

degree of strategic complementarity among creditors in the presence of an interbank market, can

make equilibrium multiplicity more likely at T1 and thus increase the fragility. The above e¤ect

is illustrated in Figure D-1, where (x�L; x
�
L)jM and (x�H ; x

�
H)jM denote the equilibria at T1 in the

presence of an interbank market and (x�L; x
�
L)jA denotes the equilibrium in autarky.
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Figure D-1: Equilibria at T1 in the presence of an interbank market and in autarky

First, we show that if an e¢ cient equilibrium ex post is selected, the presence of an interbank

market achieves a higher social welfare than autarky. The economic mechanism is that the interbank

market leads to both ex post better liquidity sharing and hence ex ante more e¢ cient portfolio

allocations. Concretely, in autarky, the optimal amount of cash holdings for banks is given by

max
c

Z b�
�1
c � g(�)d� +

Z 1

b� [c+ (1� c)(X � �(�))] g(�)d� (Program D1)

s.t. (1)-(2), (A.1�) and (A.2)

In autarky, banks are i.i.d. and thus the marginal bank threshold b� in the system is equal to the

failure threshold b�. We need to show that the maximum bank value given by Program A1 is higher

than that given by Program D1. First, for a same c, Program A1 achieves a higher value than

Program D1. In fact, in comparing (2) with (5a), (2) means that every surviving bank at least

holds cash of an amount c, whereas (5a) means that surviving banks on average hold an amount

c. Hence, for a given c, including the one that optimizes Program D1, b�(c) is lower in Program A1

than in Program D1. Second, c in Program A1 can be di¤erent from and actually is lower than

that in Program D1 to achieve an even higher maximum bank value.

Second, with a lower c, the presence of an interbank market can make equilibrium multiplicity

more likely at T1. The key reason is that the degree of strategic complementarities among creditors

is stronger with an interbank market than without one. Let an individual creditor�s threshold be
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x�j and that of its peers be x�. So equations (C.1) and (C.7) can be rewritten in one form:

�=+1Z
�=b�(x�)

R � �(�) � 1q
1

�+�

�

0@� �
�

�
�+��+

�
�+�x

�j
�

q
1

�+�

1A d� = w0

; (D.3)

where b�(x�) is de�ned by (2) for (C.1) and by (4a) for (C.7). We write the LHS of (D.3) as

function Y (x�; x�j). Hence,

@x�j

@x�
= � @Y

@x�
=
@Y

@x�j
=
db�
dx�

 
�@Y

@b�
@Y
@x�j

!
.

We set the following proper benchmark for comparison: let the di¤erent levels of c in the presence

of an interbank market and in autarky be such that they achieve the same level of b�, namely,b�jinterbank = b�jautarky. So � @Y

@b�
@Y

@x�j
jinterbank =

� @Y

@b�
@Y

@x�j
jautarky. The proof of Lemma 3 has shown that the

following is true:
db�
dx�

jinterbank > 1.

Because db�
dx� jautarky = 1 by (2), we have

db�
dx�

jinterbank >
db�
dx�

jautarky =)
@x�j

@x�
jinterbank >

@x�j

@x�
jautarky. (D.4)

(D.4) means that the degree of strategic complementarity among creditors is stronger with an

interbank market than without one. This in turn implies that the existence of a second (unstable)

equilibrium (at which @x�j

@x� > 1) is more likely with the interbank market than in autarky.
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