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Abstract

This paper presents a model to study the transmission of liquidity shocks across �nancial

institutions through the creditor channel. In the model, a borrower institution obtains funds

from a large institutional lender and small investors. When the large lender�s asset market is

hit by a liquidity shock, it might decide to withdraw funding extended to the borrower. The

potential withdrawal by the large lender causes small investors to panic and to close positions

even if the large lender does not. Facing funding problems, the borrower has to cut its activ-

ities, contributing to further shocks to the supply of market liquidity. The original shock is

exacerbated, which reinforces withdrawals by all creditors. The model helps explain how the

spreading of liquidity shocks from the broker-dealer sector to the hedge fund sector and the

feedback contribute to a systemic crisis.
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1 Introduction

Financial markets have undergone profound changes since the mid-eighties. Deregulation reshaped

the �nancial landscape with the creation of new breeds of institutional investors. Innovation mul-

tiplied new �nancial contracts at a fast pace. Years of historically low interest rates, combined

with new forms of debt �nancing, facilitated access to leverage. The increase in leverage happened

simultaneously with changes in the composition of creditors, with institutional investors occupying

a greater role in funding �nancial intermediaries. Now commercial banks source a large fraction of

their funds from the wholesale market. Broker dealers rely heavily on counterparties for �nance.

Hedge funds depend a great deal on their prime brokers for lines of credit.

It is often argued that stronger relationships among �nancial institutions help the e¢ cient

dispersion of risk in the �nancial system. However, the �nancial crisis of 2007-2009 has shown that

connections among �nancial players can also contribute to the contagion and ampli�cation of risk,

and to deepen a crisis. During the crisis, many hedge funds experienced severe liquidity shortages

and had to drastically curb their trading. According to Mitchell and Pulvino (2012):

�The imminent failure of large Wall Street prime brokerage �rms during the 2008 �nancial crisis

caused a sudden and dramatic decrease in the amount of �nancial leverage a¤orded hedge funds...

A primary consequence of this withdrawal of �nancing was the inability of hedge funds involved

in relative-value trades to maintain prices of substantially similar assets at substantially similar

prices.�(pp. 469)

In response to the systemic fragility that erupted in the wholesale markets during both the

2007-2009 US �nancial crisis and the 2010-2012 EU sovereign and banking crisis, regulators have

been considering actions that limit the use of wholesale funding by banks.1 On their own initiative,

banks have also been gradually moving towards a business model that relies on deposits and equity

to a greater extent.

In this paper, we attempt to understand how liquidity shocks are transmitted via the creditor

channel. More concretely, what is the exact chain of events and how does it contribute to a systemic

crisis?

We build a stylized model in which a modern �nancial institution borrows in the interbank

1The Basel Committee and the FSA have proposals under discussion requiring banks to reduce their dependence

on short-term wholesale funding.
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market and from non-bank creditors. Speci�cally, we model a �nancial institution (e.g., a hedge

fund), which obtains a signi�cant fraction of its funds short term from a large �nancial institution

(e.g., a prime broker), as well as small investors (e.g., client investors). The large lender is itself

a leveraged institution, whose lending decisions depend on the strength of its balance sheet. The

large lender invests in long-term illiquid assets (e.g., mortgage-backed securities) and lends short

term to other institutions. Small investors do not face any balance sheet constraints, but each of

them has less than perfect information about other investors�lending decisions.

We start by showing that in response to a large adverse shock to market liquidity, the large

lender might withdraw its short-term loans to the borrower. Risk management that is concerned

with mark-to-market losses in long-term illiquid assets, which negatively a¤ect equity capital and

margin requirements, makes the market-based lender hoard liquidity and reduce its exposure. The

lender does this by cutting lending to other institutions, resulting in leverage that is procyclical, as

evidenced by Adrian and Shin (2010).

We formally derive how the (potential) withdrawal by large lenders can then trigger two inter-

twining ampli�cation mechanisms that lead to liquidity crunches for the borrower institution. First,

the awareness that the large lender might be constrained and could potentially cuts its credit to

the borrower can spark panic among spare-liquidity providers not facing balance sheet constraints.

That is, some small investors will preemptively run on the borrower institution. More speci�cally,

should the large lender decide to hoard liquidity, the borrower institution would be exposed to a

sharp liquidity shortage. The borrower may then be forced to sell assets in illiquid markets at a loss.

Aware of this possibility, some small investors will run preemptively. In other words, the potential

action of the large creditor unnerves small investors and causes them to run. The possibility that

the market-based large lender may soon become constrained thus threatening the liquidity status

of the borrower is what triggers the run.

We believe that the above mechanism was in play in the 2007-2009 crisis when many �nancial

institutions collapsed largely for liquidity reasons. According to some observers, institutions such as

Northern Rock, Bear Stearns, Lehman Brothers and many hedge funds got into trouble not because

they were ex-ante insolvent.2 In many cases their capital reserves appeared ex-ante adequate. Even

so, investors ran, worried that these �nancial institutions would be unable to roll over their short-

term funding from wholesale markets and counterparties. Often, the massive withdrawals (run)

2See, e.g., Cox (2008), Gorton (2008), Brunnermeier (2009), Shin (2009).
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started with speculations that major lenders were constrained and were going to cut their lending.

Second, the actions of squeezed borrower institutions can feedback to the lenders and fuel a

downward spiral in liquidity. In our model, if the borrower trades in the large lender�s asset market,

a feedback loop arises: A negative shock to market liquidity causes the large lender�s balance sheet

to tighten, triggering lenders to cut funds to the borrower; this creates a funding problem for the

borrower, which then becomes unable to perform its arbitrage activities; the result is a further

deterioration in the liquidity of the assets held by the large lender. Because there is a coordination

problem among multiple lenders, the feedback on liquidity interacts with the coordination problem.

We argue that both ampli�cation mechanisms � the preemptive withdrawals by unconstrained

investors and the pull back in liquidity provision by the squeezed borrower � are able to explain,

to a large extent, the problems experienced by many hedge funds in 2007-2009. As many have

argued, the crisis originated in the banking sector, and banks� troubles then imposed immense

funding pressure on hedge funds. What we highlight in this paper is the role played by the two

ampli�cation e¤ects. The potential withdrawal of bank credit caused hedge fund investors to panic,

contributing decisively to the liquidity crunch of these funds.3 The Economist wrote: �A fuller

explanation must include the increasingly jittery nature of hedge funds�clients.�4 Ben-David et al.

(2012) document that hedge fund sello¤s were driven by both massive redemptions and margins

calls. Mitchell and Pulvino (2012) show that the huge contraction in the hedge fund sector cannot

be fully explained by bad assets. Additional evidence of our creditor channel mechanism can be

found in the annual reports of major �nancial institutions. An excerpt from the 2008 annual

report of Goldman Sachs states that: �Given the di¢ cult market conditions, and in particular, the

challenging liquidity and funding environment during 2008, we focused on reducing concentrated

risk positions, including our exposure to leveraged loans and real estate-related loans.�

An extensive literature has analyzed the ampli�cation mechanisms of a liquidity shock.5 Brun-

nermeier (2009) discusses various amplifying mechanisms in the context of the 2007-2009 crisis.

What is new in our paper is that we explicitly model the role played by a large lender in amplifying

the liquidity shocks. Speci�cally, our paper shows how two ampli�cation mechanisms through the

3Although nominally characterized as equity partners, investors in hedge funds that are able to redeem at short

notice have a payo¤ structure that resembles the one for a debtholder (see Brunnermeier (2009), Liu and Mello

(2011), Shleifer and Vishny (1997)). Teo (2011) reports that the redemption frequency in hedge funds is very high.
4�Hedge Funds in Trouble: The Incredible Shrinking Funds�, Economist, October 25-31 2008, pp. 87-88.
5See, e.g., the recent survey on �nancial crises and systemic risk by Brunnermeier and Oehmke (2013).
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creditor channel contribute to severe liquidity shortages in �nancial institutions. First, we study

a liquidity-based run. We show that a constrained large lender to a �nancial institution can po-

tentially set o¤ a self-ful�lling cycle of withdrawals by all lenders. The run is di¤erent from the

pure self-ful�lling mechanism in Diamond and Dybvig (1983), where there is no trigger for a run.

Second, we analyze a liquidity spiral. The spiral works through the creditor channel, complement-

ing the �margin spiral�in Brunnermeier and Pedersen (2009). In their model, market liquidity of

the assets held by arbitrageurs directly impacts their ability to borrow (margin), i.e., the borrower

channel. In other words, in their model the direction of the loop is: market liquidity ! borrower

! market liquidity; by contrast in our model the loop is: market liquidity ! lenders ! borrower

! market liquidity. We show that the liquidity spiral which works through the creditor channel is

reinforced by the coordination problem among lenders.

The paper is organized as follows. Section 2 presents the main model. Section 3 studies several

extensions of the main model. Section 4 discusses the empirical implications. Section 5 concludes.

2 Model

In this section, we �rst present the model setup, then solve the equilibrium, and �nally analyze the

implications of the model.

2.1 Model setup

Consider an economy with three types of agents: �nancial institution H (hereafter FI-H, e.g., a

hedge fund), �nancial institution B (FI-B, e.g., a broker), and �small�investors.6 FI-H is funded by

its own capital and the borrowing from FI-B and small investors. FI-B is the single �large�lender

to FI-H, and its loans represent a proportion � of FI-H�s total debt.7 The remaining proportion,

1 � �, of FI-H�s debt comes from a continuum of small lenders. All debt is of the same seniority;

this assumption will be relaxed later in the extended model in Section 3. Figure 1 summarizes the

6 In our model, we could have explicitly used a general-equilibrium framework with a continuum of identical agents

of each type. However, this would complicate the techniques in computing the equilibrium. In fact, in our global

game setup where each borrower has a continuum of small lenders, solving this equilibrium itself involves technical

complications. A simpli�ed setup with an �aggregate�agent for each type is therefore used.
7For simplicity, we assume that there is only one large lender, but the insight applies when there are multiple

large lenders.
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balance sheet linkages among di¤erent �nancial institutions.

The setup captures the feature that modern �nancial institutions borrow in the interbank market

and from non-bank creditors. FI-H can be interpreted as a hedge fund, and FI-B as its prime broker.

FI-H could also be a commercial bank or an investment bank that relies heavily on the wholesale

market or counterparties for borrowing; in this case, FI-B would be the wholesale market lender

or counterparty.8 Small lenders in our model can be interpreted as non-bank creditors, who are

spare-liquidity providers to the �nancial system with no balance sheet constraints.

Figure 1: Balance sheet linkages

The model has three dates: T0, T1 and T2. Later, we split T1 into T1 and T1+. All three types

of agents are risk-neutral. The risk-free rate is assumed to be zero.

2.1.1 Large lender: FI-B

At T0, FI-B has two types of assets on its balance sheet: short-term assets (AS) and long-term

assets (AL). These assets are �nanced with debt (D) and equity (E). That is, FI-B is a leveraged

�nancial institution.

We assume that FI-B�s lending to FI-H is short term.9 In our model, short term means that

8 In recent years, all types of �nancial institutions (commercial banks, investment banks, hedge funds, insurance

companies) are involved in wholesale lending. One example is the creditor structure of o¤-balance-sheet vehicles,

SIVs, which are essentially unregulated departments of banks. Lenders to SIVs include commercial banks, investment

banks and hedge funds, each investing in a di¤erent tranche.
9See, e.g., the evidence in Afonso, Kovner and Schoar (2013).
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FI-B has the right to call the loan at T1 or extend it until T2. For simplicity, we assume that FI-B

holds one unit of the long-term asset, denoted by CDO. The fundamental value of CDO at T0 is

a constant v, which equals its expected liquidation value at maturity T2. At T0, many investors

including FI-B hold CDO. However, for various reasons, some investors may decide to sell some

units of CDO before maturity T2. We call these investors noise or liquidity traders. Imperfect

market depth translates into a cost to early liquidation. The cost is re�ected in a downward-

sloping demand curve for CDO:

p = v � dB � s; (1)

where dB is a measure of market depth which can be time-varying, s is the aggregate quantity of

asset CDO that investors sell, and p is the price.10

Liquidity/noise traders trade at any time before T2. For simplicity and without loss of generality,

we assume that they trade at T1+, where T1+ is an instant after T1. We assume that the ex-ante

aggregate demand for liquidity from these investors is normally distributed with es � N(0; �2).

Hence, the mark-to-market value of FI-B�s long-term asset at T1+, denoted by AL1+, is distributed

according to

AL1+ � N(v; �2d2B): (2)

Also, the balance sheet equation AS + ALt = D + Et is always valid at any time t, where A
L
t and

Et are the mark-to-market values of the long-term asset and equity, respectively.

FI-B manages risk with tools such as Value at Risk (VaR) and takes prudent and precautionary

actions toward unfolding events (see, e.g., Adrian and Shin (2012) for the micro-foundation reason

for using VaR). Speci�cally, we assume that FI-B always requires that the probability of its mark-

to-market leverage (in terms of the asset-to-equity ratio) exceeding an upper limit L(> 1) be less

than a small percentage � (e.g., � = 5% < 1
2). The reason for this precautionary rule is that

�nancial institutions can face severe consequences such as margin calls, debt downgrading and

di¢ culty in re�nancing if their leverage ratios exceed certain limits.11 In an attempt to manage

10This is a similar speci�cation to those in Grossman and Miller (1988), Campbell, Grossman and Wang (1993),

Morris and Shin (2004), and Brunnermeier and Pedersen (2005).
11 If the mark-to-market value of an asset goes down, so does its collateral value to the creditors, which is derived

from the resale value. Hence, lower market liquidity increases the probability of margin calls. Margin calls at T1+

are also very costly because long-term illiquid assets will go at �re sale prices, given that short-term loans can only

be called at T2 if they had not been at T1.
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the risk of such costly events, FI-B is assumed to take prudent actions beforehand.

In our model, the adverse event � the risk of excessive leverage caused by �uctuations in the

market price of CDO � occurs at T1+. Therefore, FI-B�s risk management requires that the

following condition is satis�ed at T1:

Pr(
D + E1+
E1+

> Ljz1) < �, (3)

where z1 is the information set of FI-B at T1.12 The strength of the balance sheet can be expressed

in terms of leverage; in fact, there is a one-to-one mapping between the pair (D;AS) and the pair

(E0, L0):

8<: D = E0(L0 � 1)

AS = E0L0 � v
, where E0 is the equity value and L0 is the asset-to-equity ratio at

T0. Denote the �-percentile of AL1+ � N(v; �2d2B) by C, i.e., � � �(C�v�dB
).

We assume that at T1 FI-B receives perfect information about the market depth, dB. If dB

happens to be high, FI-B may need to deleverage by calling its short-term loans AS to comply with

its risk management requirement, (3).13 Lemma 1 follows.

Lemma 1 After FI-B has received information about market depth dB, its decision rule at T1 based

on its risk management requirement is

(L0; dB) 7�!

8<: Call L0 � L�B(dB)

Hold L0 < L
�
B(dB)

,

where

L�B(dB) � L�
v � C(dB)

E0
(L� 1) (4)

is a threshold and a decreasing function of dB.

Proof. See Appendix.

Lemma 1 says that for a given L0, when FI-B receives information of a su¢ ciently high dB at

T1 such that L0 � L�B(dB) , it cuts its short-term lending AS ; otherwise, it extends its loans. In

12Without loss of generality, we assume this constraint is not binding and is slack at T0.
13Without loss of generality, we assume that FI-B either calls its entire loans or does not call at all. Essentially, we

emphasize the possibility rather than the necessity. That is, what matters for our purpose is that there is a su¢ ciently

large negative shock to dB such that FI-B calls a large amount of its loans. When the shock to dB is small enough,

FI-B may not call a large amount of its loans, which, nevertheless, is not what we are interested in. The same e¤ect

could also be achieved in our model if dB followed a discrete stochastic process with jumps, so that a shock to dB

would cause FI-B to call a block size of the loans.
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other words, an increase in dB can lead to a reduction in AS . The intuition behind Lemma 1 is as

follows. As market liquidity shrinks (i.e., dB increases), the value of the long-term assets becomes

more volatile (see (2)) and the distribution becomes more fat-tailed (i.e., both upside and downside

risks increase). The risk management (VaR) only cares about the downside risk. So the loss in

asset values translates into an increase in the asset-to-equity ratio; that is, the mark-to-market

leverage increases. In order to bound the potential leverage to a certain level, the lender must start

deleveraging and liquidate positions, �rst and foremost by liquidating relatively liquid assets such

as loans extended to other institutions.14

2.1.2 Borrower �nancial institution: FI-H

FI-H�s asset is normalized to one unit of the long-term asset with random payo¤ eX at T2. We

denote the fundamental value of FI-H�s long-term asset by f = E( eX), i.e., the asset�s expected
liquidation value at T2 perceived at T1.15 The asset is illiquid in the sense that a premature sale

at T1 results in a downward-sloping sale price of p = f � dH � s, where dH is the market depth and

s (2 [0; 1]) represents the units of selling from FI-H. Basically, we think of FI-H as representing

the �aggregate��nancial institution of this type, and FI-H�s sales impact the market price (see also

Stein (2012)). FI-H�s revenue from selling quantity s equals �(s) = ps = (f � dH � s) � s.16

FI-H has debt with face value K. The debt is short term, and the debtholders have the right

to call their loan at T1, in which case FI-H is liable to repay them at face value. If the debtholders

do not call their lending at T1, their lending is automatically extended until T2, in which case FI-H

is required to repay the debtholders with interest; the total notional amount of repayment at T2

is KR, where R is the gross interest rate (R > 1). A proportion � of FI-H�s debt is held by FI-B,

and is identical to FI-B�s short-term assets AS ; and 1� � is held by a continuum of small lenders.

As in Diamond and Dybvig (1983), we assume further that if the debtholders call their loans

14That it is optimal for the large lender to liquidate liquid assets �rst has been asserted by Scholes (2000, pp.

19): �In an unfolding crisis, most market participants respond by liquidating their most liquid investments �rst to

reduce exposures and to reduce leverage.�The price reduction of the long-term asset (at T1) resulting from the loss of

liquidity is likely to be temporary. Selling the asset would realize an actual loss. Empirically, the 2007-2009 �nancial

crisis witnessed that �nancial institutions held on to their long-term illiquid assets until the governments bailed them

out.
15At T1, FI-H�s lenders have homogeneous information and beliefs about the distribution of eX.
16The bank-run game works as long as there is a liquidation discount in asset sales.
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at time T1, the only way that FI-H can repay is to liquidate assets. It cannot �nd new creditors

that are ready to replace the old creditors. This assumption can be justi�ed by the literature on

relationship lending.17 The idea is that it takes time for a creditor to build �rm-speci�c lending

relationships with a borrower, either because of moral hazard related to monitoring the borrower,

or because of adverse selection related to the quality of the borrower. Mitchell and Pulvino (2012)

present empirical evidence supporting this assumption for broker lending to hedge funds. Huang

and Ratnovski (2011) analyze the role of wholesale market lenders in monitoring banks.

Although it is suboptimal for FI-H to sell any unit of asset at T1 (because of liquidation discount

in selling), it might be forced to do so because its creditors may decide not to extend their short-term

loans.

We now state the payo¤s of a creditor when it decides either to call the loans at time T1 (and

thus forego the interest), or to extend the loans until time T2. The payo¤ is a function of the

aggregate number of creditors calling. Denote by u the proportion of creditors that call the loans

at T1, where 0 � u � 1. Lemma 2 states the (local) strategic-complementarity payo¤ structure.18

Lemma 2 The payo¤ function for an individual creditor of calling the loan at T1 is wC(u) =8<: K if 0 � u � f�dH
K

f�dH
u if f�dH

K < u � 1
, while the payo¤ function of extending the loan until T2 is

wH(u) =

8<: E[min(
(2dH�f)+

p
f2�4uKdH

2(1�u)dH
eX;KR)] if 0 � u � f�dH

K

0 if f�dH
K < u � 1

:

Proof. See Appendix.

We also denote by 4w(u) the di¤erence in payo¤s between holding and calling the loan at T1,

as a function of u. That is,

4w(u) = wH(u)� wC(u) =

8<: E[min(
(2dH�f)+

p
f2�4uKdH

2(1�u)dH
eX;KR)] �K if 0 � u � f�dH

K

�f�dH
u if f�dH

K < u � 1
:

Figures 2(a) and 2(b) depict the payo¤ functions (where eX follows a two-state distribution).19

17See, e.g., Calomiris and Kahn (1991) and Diamond and Rajan (2000, 2001).
18Local strategic complementarities here mean that the payo¤ di¤erence function of holding versus calling is not

necessarily monotonic in the total size of calling, but satis�es the �single crossing property� as in Goldstein and

Pauzner (2005).
19For simplicity, we can assume that eX follows a two-state distribution eX 2

�
0; �X

	
, and the probability of realizing

cash �ow �X at T2 perceived at T1 is �.
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Figure 2(a): Payo¤ functions of holding and calling

Figure 2(b): Di¤erence in payo¤ between holding and calling

From Figure 2(a), we can see the (local) strategic-complementarity payo¤ structure: If a high

proportion (a high u) of creditors call, the optimal strategy for an individual creditor is also to call.

If a low proportion (a low u) of creditors call, the optimal strategy for an individual creditor is also

to hold (that is, not call).

2.1.3 Small lenders

Small lenders in our model should be interpreted in a broad sense. They are not only typical

debtholders. If FI-H is a hedge fund, then small lenders can also be interpreted as the hedge fund�s
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limited partners, such as high-net-worth individuals and funds of hedge funds, as long as these

are allowed to redeem their investments early (Shleifer and Vishny (1997)). In fact, many hedge

funds have, well before the 2007-2009 crisis, considerably reduced the lock-up period. Teo (2011)

reports that 60% of the funds in his sample (or 5,015 funds) allow for monthly or more frequent

redemptions, and 32% (or 2676 funds) allow for redemptions every one to three months. Although

nominally characterized as equity partners, investors in funds that are redeemable at short notice

have a payo¤ structure similar to that of a debtholder. Brunnermeier (2009), Chen, Goldstein

and Jiang (2010), and Liu and Mello (2011) provide detailed arguments showing why a �rst-mover

advantage can make �nancial institutions in general, and not just banks, subject to runs. We will

explicitly study the small investors as equity investors in the extended model in Section 3.

Unlike the large lender FI-B, small lenders are not themselves subject to any balance sheet

constraints.

2.1.4 Information, decisions, and timeline

At T1, both the large lender FI-B and the small lenders receive perfect information about market

depth dH and dB.20 However, the strength of FI-B�s balance sheet is not public information. Only

FI-B itself knows L0. Other investors receive signals about L0.

It is realistic to assume that information about a balance sheet, valued at market prices, is

non-public. First, the mark-to-market value changes frequently, and adjusting book value for

impairments requires information that is not easily gathered by outsiders. Second, �nancial in-

stitutions di¤er signi�cantly from non-�nancial �rms in that their capital structure and �nancial

positions can be quickly altered by trading and risk management as well as by �nancial commit-

ments. Events after the collapse of Lehman Brothers in September 2008 have shown that a primary

di¢ culty in �nancial markets was that nobody had a clue about the true strength of the balance

sheet of big �nancial players.

20We assume that small lenders also observe dB . A weaker assumption that small lenders receive imperfect in-

formation (signals) about dB does not change the model results. In reality, small investors can learn about market

depth by observing spreads and other material trading information. Investors can obtain a lot of information about

market liquidity and depth even if they are not experts on that market. Later, we will also consider the case where

dH and dB are perfectly correlated, under which the assumption is naturally true.
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Speci�cally, we assume that small lender i�s signal about the leverage of FI-B is given by

Li0 = L0 + �
i,

where �i is uniformly distributed with support [��; �], and �i is independent from �j for i 6= j.

Furthermore, as in the global games literature, we assume that L0 has an improper prior over the

real line.

At T1, the large lender FI-B and the small lenders decide simultaneously whether to call the

loans. The large lender FI-B�s strategy at T1 is a map

(L0; dH ; dB) 7�! (Call, Hold),

while each small lender i�s strategy at T1 is a map

(Li0; dH ; dB) 7�! (Call, Hold).

Figure 3 describes the timeline.

Figure 3: Timeline of events

2.2 Equilibrium
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We are interested in the threshold equilibrium, where every lender uses a threshold strategy.21 The

strategy of the small lenders is

(Li0; dH ; dB) 7�!

8<: Call Li0 � L�S(dH ; dB)

Hold Li0 < L
�
S(dH ; dB)

,

where L�S(dH ; dB) is the threshold, while the strategy of the large lender is

(L0; dH ; dB) 7�!

8<: Call L0 � L�B(dH ; dB)

Hold L0 < L
�
B(dH ; dB)

,

where L�B(dH ; dB) is the threshold.

2.2.1 Equilibrium when asset markets H and B are independent: Ampli�cation 1

In this equilibrium, we assume that asset markets H and B are independent. More speci�cally,

dH and dB are independent. This way we abstract away from the feedback loop between the two

markets and focus on other aspects of the model.

Figure 4 illustrates the idea of the benchmark equilibrium. Each small lender�s decision depends

on its beliefs about the large lender�s action, as well as on the actions of other small lenders. The

large lender FI-B�s decision depends on whether its risk management constraint is binding. However,

we need to consider an endogenous feedback. The large lender�s potential withdrawal triggers some

small lenders to run, which in turn precipitates the large lender�s withdrawal due to the strategic

complementarities in payo¤s. Therefore, FI-B�s decision depends on both its risk management

requirement and its beliefs about the actions of small lenders.

Figure 4: Idea of equilibrium
21 In the �nancial economics literature on applications of global games, the threshold equilibrium is of primary

interest. For example, Morris and Shin (2004, 2009) and He and Xiong (2012) consider only threshold equilibria.
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An interesting result of our model is that we prove that in equilibrium the feedback described

above does not occur. That is, FI-B�s decision is solely determined by its own risk management

concerns. Intuitively, because the large lender is big (and thus the aggregate size of small lenders

is small), that some small lenders call is not su¢ cient to precipitate the large lender into calling.

This result is also convenient for our analysis because such feedback is not a focus of our paper.22

We �nd the threshold equilibrium in two steps.

Step 1: Suppose that FI-B uses the threshold strategy in Lemma 1. Then �nd the equilibrium

strategy among small lenders.

Step 2: Given the small lenders�strategy in Step 1, prove that FI-B indeed uses the strategy

in Lemma 1.

Proposition 1 gives the result of the �rst step.

Proposition 1 When � is su¢ ciently high such that � � �(K;R; f; dH), where � is non-negative

and solves
Z �T��

0
4 w(u)du +

Z 1

�T
4 w(u)du = 0 or

Z �T

0
4 w(u)du +

Z 1

�T+�
4 w(u)du = 0 and

�T is a cuto¤ de�ned by 4w(�T ) = 0, there exists a unique threshold equilibrium among the small

lenders given the large lender�s threshold strategy in Lemma 1:

L�S(dH ; dB) = L
�
B(dB) + ��

2�

1� � �m(K;R; f; dH ; �); (5)

where m solves the equation
Z m

0
4 w(u)du+

Z 1

m+�
4 w(u)du = 0.

Proof. See Appendix.

The following corollary immediately results from Proposition 1.

Corollary 1 No matter what threshold strategy the large lender uses, in equilibrium there is a

proportion, m, of the small lenders that run before the larger lender.

Proof. See Appendix.

In equilibrium, the total proportion of investors withdrawing is given by

u (L0) =

8>>>>>><>>>>>>:

0 L0 < L
�
S � �

(1� �)L0+��L
�
S

2� L�S � � � L0 < L�B
�+ (1� �)L0+��L

�
S

2� L�B � L0 � L�S + �

1 L0 > L
�
S + �

, (6)

22Corsetti et al. (2004) focus on studying such feedback.

15



which is depicted by Figure 5. FI-B withdraws at the threshold L0 = L�B(dB). Some small investors

begin to withdraw at L0 < L�B(dB), before the large lender decides to withdraw. In fact, there

is altogether a proportion m of the small lenders that run before FI-B, where m is endogenously

given in our model. Importantly, m is independent of the threshold L�B. That is, no matter what

threshold strategy the large lender uses, given the large lender�s threshold strategy, the equilibrium

among the small lenders results in a proportion m of them withdrawing before the large lender

does. This result will play an important role when we consider the full equilibrium in the next

subsection.

Figure 5: Total proportion of lenders withdrawing in equilibrium

In the second step, we show that the large lender�s best response to the small lenders�strategy

is to use the strategy in Lemma 1.

Proposition 2 When � � �(K;R; f; dH), given that the small lenders use the strategy in Propo-

sition 1, the large lender�s best response is to call its loan if and only if L0 � L�B(dB) as in Lemma

1. That is, the large lender�s withdrawal decision coincides with its risk management requirement.

Proof. See Appendix.

The intuition behind Proposition 2 is as follows. Because the large lender can potentially

withdraw, some small lenders withdraw �rst. Yet, that a low proportion of the small lenders

withdraw (i.e., in equilibrium the proportion is m, which is lower than �T ) is not su¢ cient to cause

a feedback to the large lender. So the large lender�s decision is determined only by its own risk

management requirement considerations. We should emphasize that the condition of no feedback

is not strong. In fact, as long as a unique threshold equilibrium exists among the small lenders,
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there is no feedback. That is, a su¢ cient condition for no feedback is � � �, which is weaker than

1� � � �T .

2.2.2 Equilibrium when asset markets H and B are dependent: Ampli�cation 2

In this subsection we model the feedback from FI-H to dB. Suppose that FI-H represents investors

with market expertise, such as hedge funds. The social role of these sophisticated investors is

to trade and hold illiquid assets to provide market liquidity. When these investors face funding

constraints and are forced to unwind positions, market liquidity is reduced. A downward spiral

then arises: The fact that FI-B may withdraw induces some small investors to run. The run by

the small lenders causes FI-H to reduce its exposure and limit arbitrage activities. The reduction

of arbitrage worsens market liquidity dB further. Lower market liquidity, in turn, precipitates FI-B

into withdrawing. Figure 6 illustrates the feedback loop.

Figure 6: Feedback loop

We assume that the illiquid assets of FI-H and FI-B are in a similar category. Alternatively,

investors in asset markets H and B face the same group of risk-averse market-makers. Market-

makers have a limited capability to absorb risky assets because of their risk-aversion utility. If

investors in market H unload some assets and sell them to the market-makers, the market-makers

will be less able to buy more risky assets, including assets from market B. That is, asset sales in

market H will reduce market liquidity in market B.

More concretely, we assume that the market-makers in markets H and B are the same, and dH

and dB are identical. At an extreme, FI-H and FI-B may hold the same asset, say mortgage-backed

securities (MBS). Suppose investors in market H unload s1 amount of the asset �rst, and investors

in market B unload s2 amount later. Then, the demand curve faced by the sellers in market B is

p = v � dB � (s1 + s2),

rather than p = v � dB � s2. Therefore, the market depth from the perspective of the sellers in

market B is d
0
B =

v�p
s2
= s1+s2

s2
dB rather than dB; clearly, d

0
B > dB. That is, the sales in market H
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reduce market liquidity in market B.23

Now we consider the interaction between the large lender FI-B and the small lenders. FI-B�s

decision has a direct impact on small lenders�decisions because of the strategic complementari-

ties in payo¤s. The small lenders�decision indirectly impacts the decision of FI-B because their

withdrawals force FI-H to conduct �re sales, which in turn impacts the degree of market liquidity

dB. The equilibrium is the solution to a �xed-point problem. Conveniently, from (5), we know

that the small lenders have a linear response to FI-B�s strategy. That is, whatever the thresh-

old of the large lender, given its threshold L�B, the small lenders� response is to use a threshold

L�S = L
�
B + �� 2�

1�� �m(K, R, f , dH , �). Therefore, we only need to �nd L
�
B in equilibrium.

By Corollary 1, there is a proportion m of small lenders that run on FI-H before the large lender

FI-B does. That is, ex post, in equilibrium, when the realization is L0 = L�B,
24 there is a proportion

m of small lenders that withdraw. This means that FI-H needs to sell s1 units of the asset at T1

to repay the small lenders, just before FI-B starts calling its loans, where s1 =
f�
p
f2�4mKdH
2dH

.25

Hence, at T1+, the mark-to-market price of CDO, in contrast with (1), is

p = v � dB � (s1 + es);
where s1 is the sales by FI-H at T1 and es is the sales by noise traders at T1+. Equivalently, although
FI-B observes at T1 a market liquidity of dB, it rationally anticipates the realized market liquidity

(for investors in market B) at T1+ of d
0
B = s1+eses dB. Thus, the mark-to-market value of FI-B�s

long-term asset at T1+ is distributed according to AL1+ � N(v � dB � s1; �2d2B).

In Lemma 1, we have shown that if the asset value follows the distribution AL1+ � N(v; �2d2B),

then FI-B�s threshold, which results from its risk management requirement, is L�B = L�
v�C(dB)

E0
�

(L � 1). Now the asset value has the distribution AL1+ � N(v � dB � s1; �2d2B). Denoting by

C
0
the �-percentile of the new distribution of AL1+, i.e., � � 	(C

0�v+dB �s1
�dB

), we have the revised

threshold L�
0
B = L � v�C0 (dB)

E0
� (L � 1), which is certainly lower than the original threshold L�B

because C
0
(dB) < C(dB).

Proposition 3 If asset markets H and B are co-dependent, a unique threshold equilibrium of the

23As in Brunnermeier and Pedersen (2009), market liquidity is measured as the degree to which the market price

of an asset is depressed away from its �fundamental�value.
24Rigorously, it should be L0 = L�B-, where L

�
B- is lower than but in�nitely close to L

�
B .

25Recall the calculation of s in the proof of Lemma 2.
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model exists, where the large lender FI-B uses the threshold

L�
0
B = L�

v � C 0
(dB)

E0
� (L� 1),

which is lower than L�B, while the small lenders use the threshold

L�
0
S = L

�0
B + ��

2�

1� � �m(K;R; f; dH ; �).

Proof. See Appendix.

Figure 7 shows the total proportion of investors withdrawing ex post for a given L0 under the

two equilibria. The feedback e¤ect causes both the large and the small lenders to run at lower

thresholds.

Figure 7: Proportion of lenders withdrawing in the two equilibria

The intuition behind Proposition 3 is as follows. When the large lender FI-B is hit by a

liquidity shock, it might decide to withdraw funding to FI-H. Due to imperfect information, some

small investors believe that FI-B�s leverage is worse than it actually is, and therefore withdraw

their funding even when sometimes FI-B does not. As FI-H must sell to satisfy those early small

investors, the liquidity in market B is reduced because of the correlation between the two markets.

The original shock to FI-B is therefore exacerbated, reinforcing the case for FI-B to call the loans,

in turn causing more small investors to withdraw, and so on in a downward spiral. The equilibrium

in the last subsection only incorporates the original shock while the current equilibrium takes into

account the feedback.
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The ampli�cation mechanism in this subsection generates a liquidity spiral, in which market

liquidity impacts creditors�funding availability. The lower the market liquidity, the less the creditors

are able to lend (the creditor channel). This spiral can be contrasted with the �margin spiral�in

Brunnermeier and Pedersen (2009) and Gromb and Vayanos (2002) where the impact of market

liquidity is on the borrower�s borrowing constraint, i.e., the lower the market liquidity, the lower the

borrowing capacity (the borrower channel). Figure 8 illustrates the two spirals. The coordination

problem (among the various lenders) and the liquidity spiral working through the creditor channel

interact with each other.

Figure 8: Liquidity spiral

2.3 Implications of the model

In this section we conduct comparative static analysis and welfare analysis.

2.3.1 Comparative static analysis: how vulnerable is FI-H?

We wish to understand the magnitude and the determinants of the liquidity problems for a �nancial

institution.

Our focus is on the borrower institution, FI-H. How likely is it to su¤er from funding withdrawals

by its creditors? Morris and Shin (2008) argue that two factors determine the probability of a

(creditor) run. The �rst factor is the threshold for coordination to not run, and the second factor

is the cost of miscoordination. In our model, we show that these two factors actually correspond

to the two sides of the balance sheet of the borrower institution.
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Looking at the �rst factor, which in our model is characterized by dB, we can see that if dB is

high, for a given L0, small lenders anticipate a higher probability that the large lender FI-B will

run. So it is hard for small lenders to coordinate to not run. That is,

@L�S(dH ; dB)

@dB
< 0:

The second factor in our model is characterized by dH . If dH is high, sales by FI-H will greatly

depress the value of the asset. A lender that decides not to run has a high probability of getting

nothing. That is, the cost of miscoordination is high. We show in the appendix that

@L�S(dH ; dB)

@dH
< 0:

If adverse shocks occur simultaneously (i.e., dH and dB are high at the same time), a �nancial

institution like FI-H can su¤er a run that is triggered on both the asset and the liability side. When

this happens, FI-H becomes very vulnerable.

In particular, if markets are dependent and market liquidity is correlated, the two channels feed

into each other, creating a downward spiral. Formally, we prove in the appendix that

@2L�
0
B

@dH@dB
< 0 and

@2L�
0
S

@dH@dB
< 0;

where L�
0
B and L

�0
S are given in Proposition 3.

2.3.2 Welfare analysis

Our paper emphasizes the ampli�cation mechanisms contributing to liquidity squeezes in �nancial

institutions. In this subsection, we discuss the welfare consequences of these ampli�cation e¤ects,

namely the extent to which these e¤ects are suboptimal relative to the constrained second-best

equilibrium.

We de�ne the constrained second-best equilibrium �rst. In our model, the small lenders do not

face any constraints. The only constraint is the large lender�s risk management requirement. So

the constrained second-best equilibrium is the equilibrium where the large lender calls when its risk

management constraint is binding and the small lenders do not call. As shown before, the large

lender needs to withdraw to satisfy its risk management requirement when the liquidity shock to

dB is large enough such that dB � d�B, where d�B solves L0 = L�B(d�B). Therefore, in the constrained
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second-best equilibrium, the aggregate proportion of lenders calling is

uSB(L0; dB) =

8<: 0 when dB < d�B(L0)

� when dB � d�B(L0)
.

The two ampli�cation mechanisms in our model correspond to the two equilibria. We compare

these two equilibria with the constrained second-best equilibrium in terms of welfare.

In the �rst equilibrium, the aggregate proportion of lenders calling, denoted by uI , is uI(L0; dH ; dB) =

u, where u is given by (6), while in the second equilibrium, the aggregate proportion of lenders

calling, denoted by uII , is uII(L0; dH ; dB) = u, where u is given by (6) but L�B is replaced by L
�0
B

and L�S is replaced by L
�0
S .

Clearly, we have uSB � uI � uII , with strict inequalities holding for some L0; dH ; dB. Figure 9

shows uSB, uI and uII . Each level of ampli�cation leads to more lenders withdrawing for a given

L0; dH , and dB.

Figure 9: Proportion of lenders withdrawing in the three equilibria

In our model, welfare is calculated based on the total realized value of FI-H�s asset (at T1 and

T2). Speci�cally, if the aggregate proportion of lenders calling at T1 is u, FI-H needs to liquidate s

proportion of its asset, where u �K = �(s). Therefore, the welfare, measured by the total expected

liquidation value of the asset, is W = s � (f � dH � s) + (1 � s) � f , where the �rst (respectively

second) term is the liquidation value at T1 (respectively T2).

We denote the welfare in the three equilibria as WSB, W I and W II . Because @W
@s < 0, it is

easy to show that WSB �W I � W II , with strict inequalities holding for some L0; dH ; dB.
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Proposition 4 The welfare under the three equilibria has the ranking WSB � W I � W II , with

strict inequalities holding for some L0; dH ; dB. That is, the equilibria under market frictions are

less e¢ cient than the constrained second-best equilibrium while the equilibrium with the liquidity

spiral is less e¢ cient than the equilibrium without it.

The intuition behind Proposition 4 is easy to understand. In the constrained second-best

equilibrium, only the large lender calls when its risk management constraint is binding. For each

level of ampli�cation, more lenders close their positions preemptively. More sales by FI-H at a

discount at T1 worsen welfare.

It is worth noting that the presence of noise traders in our model does not a¤ect the welfare

analysis. In fact, noise traders�selling happens at T1+, while our welfare analysis surrounds the

selling by FI-H at T1 which is triggered by the precautionary actions of FI-B. In other words, our

welfare analysis compares the asset sales at T1 under di¤erent scenarios of equilibrium conditional

on the noise trading distribution es at T1+.
3 Model Extensions

In this section, we consider several extensions of the main model. The extensions serve two purposes.

First, we show that the basic results of our main model are robust to these extensions. Second, the

extensions o¤er additional economic insights.

3.1 Debt seniority

In the main model, we have assumed that all debt is of the same seniority. In this subsection, we

relax this assumption and consider the debt from FI-B to FI-H to be senior.26 Let us consider the

position of the marginal small lender who receives the signal L�S . The distribution of L0 in his

eyes is uniform [L�S � �, L�S + �]. The total proportion of small lenders withdrawing in his eyes is

uniform [0, 1 � �]. This marginal small lender also needs to conjecture whether the large lender

will withdraw at T1. From its perspective, the probability that the large lender will not withdraw

is
L�B � L�S + �

2�
. (7)

26Dealer funding to hedge funds is typically in the form of repo or derivative contracts. Both repos and derivatives

are exempt from the automatic stay, making them e¤ectively super senior to all other claims.
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In the case where FI-B withdraws, seniority implies that the marginal small lender�s net expected

payo¤ from holding (versus calling) is

1

1� �

Z 1

�
4 w(u)du.

In the case where FI-B does not withdraw, the marginal small lender�s net expected payo¤ from

holding (versus calling) is
1

1� �

Z 1��

0
4 w(u)du.

In equilibrium, the marginal small lender is indi¤erent to holding versus calling, which means�
1� L

�
B � L�S + �

2�

�
1

1� �

Z 1

�
4 w(u)du+ L

�
B � L�S + �

2�

1

1� �

Z 1��

0
4 w(u)du = 0. (8)

Hence, we �nd the equilibrium.

Proposition 5 Suppose that the lending by the large lender FI-B is senior to the lending by small

lenders. In equilibrium, the large lender�s threshold is L�B, as given in Lemma 1, while the small

lenders�threshold is

L�S(dH ; dB) = L
�
B(dB) + ��

2�

1� � �m(K;R; f; dH ; �);

where m = (1� �)
�

Z 1

�
4w(u)du

�

Z 1

�
4w(u)du+

Z 1��

0
4w(u)du

.

Proof. See Appendix.

By proposition 5, the result in Corollary 1 does not change; namely in equilibrium there is a

proportion, m, of small lenders that run before the larger lender does (although m is di¤erent from

that in Corollary 1). Hence, the results in Propositions 3 and 4 do not change.

3.2 The small investors as equity investors

So far we have assumed that the small lenders in our model are debtholders. Now we will explicitly

model them as limited partners in a hedge fund � equity investors. Liu and Mello (2011) model

runs on hedge funds with no debt (and only equity). In that article, we show that equity partners in

funds who are able to redeem at short notice have a payo¤ structure resembling that of short-term

debtholders, and hence a �rst-mover advantage causing a run exists.
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Now we consider a hedge fund (FI-H) with internal equity, external equity (small investors),

and debt (FI-B�s lending), as depicted in Figure 10. The lender, FI-B, can run because of margin

calls, and the external equity investors can also run because of redemption. At T0, the asset side of

FI-H includes one unit of the asset with its market price being 1. To �nance the asset, FI-H borrows

K (face value) from FI-B, and the remaining �nancing comes from a continuum of equityholders

with unit mass, each contributing 1 �K. Among the equityholders, the � proportion consists of

internal equityholders and the 1� � proportion external equityholders. Other setups are the same

as those of the main model.27

Figure 10: Small investors as equity investors in FI-H

The key di¤erence between this extension and the main model lies in the payo¤ structure, which

is no longer that in Lemma 2, that is, Figure 2 will be di¤erent. Denote by u the number of small

investors that redeem at T1, where 0 � u � 1 � �. Conditional on the broker FI-B calling its

loan at T1, the payo¤ for an individual small investor choosing to redeem versus not to redeem is,

respectively, given by

�wC(u) =

8<: 1�K if 0 � u � f�dH�K
1�K

f�dH�K
u if f�dH�K

1�K < u � 1� �
(9)

and

�wH(u) =

8<:
(2dH�f)+

p
f2�4dH [K+u(1�K)]
2dH(1�u) f if 0 � u � f�dH�K

1�K

0 if f�dH�K
1�K < u � 1� �

. (10)

In contrast, conditional on FI-B not calling its loan at T1, the payo¤ for an individual small investor

choosing to redeem versus not to redeem is, respectively, given by

ŵC(u) = 1�K for 0 � u � 1� � (11)

27For simplicity, we assume that the asset of FI-A has payo¤ f at T2, without uncertainty.
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and

ŵH(u) =

max

�
(2dH�f)+

p
f2�4dHu(1�K)
2dH

f �KR; 0
�

1� u for 0 � u � 1� �. (12)

To see (9)-(12), notice �rst that at T1 the hedge fund�s mark-to-market net asset value (NAV) is

1�K.28 If a small investor redeems, his claim is 1�K at T1. Also, the loan from FI-B is senior. We

discuss two scenarios in order. In the �rst scenario FI-B calls its loan at T1. Conditional on a total

number, u, of small investors redeeming at T1, FI-H needs to sell s units of its asset, where �(s) =

K + u (1�K) or s = f�
p
f2�4dH [K+u(1�K)]

2dH
. If u is small enough such that �(1) � K + u (1�K)

or u � f�dH�K
1�K , FI-H does not fail at T1, in which case a small investor that redeems has payo¤

�wC(u) = 1�K and a small investor that does not redeem has payo¤ �wH(u) = (1�s)f
1�u . If u is high

enough such that �(1) < K + u (1�K) or u > f�dH�K
1�K , FI-H fails at T1, in which case a small

investor that redeems has payo¤ wC(u) = f�dH�K
u and a small investor that does not redeem has

payo¤ wH(u) = 0.

In the second scenario FI-B does not call its loan at T1. For simplicity, we assume that �(1) �

(1� �) (1�K) or f � dH > (1� �) (1�K), which means that even if all small investors redeem

at T1, FI-H can still survive at T1. Conditional on a total number, u, of small investors redeeming

at T1, FI-H needs to sell s units of its asset, where �(s) = u (1�K) or s = f�
p
f2�4dHu(1�K)

2dH
.

Hence, an individual small investor that redeems has payo¤ ŵC(u) = 1 � K, which is (11); an

individual small investor that does not has payo¤ ŵH(u) = max[(1�s)f �KR;0]
1�u , which is (12), by

noting that FI-H needs to �rst repay FI-B the debt claim KR and then distribute the fund�s payo¤

to its staying equityholders at T2.

De�ne 4 �w(u) � �wH(u) � �wC(u) and 4ŵ(u) � ŵH(u) � ŵC(u). As the information structure

is still the same as in the main model, from the perspective of the marginal small investor, the

probability that FI-B will not withdraw is still given by (7). In equilibrium, the marginal small

investor is indi¤erent to redeeming versus not, which implies�
1� L

�
B � L�S + �

2�

�
1

1� �

Z 1��

0
4 �w(u)du+ L

�
B � L�S + �

2�

1

1� �

Z 1��

0
4ŵ(u)du = 0.

Proposition 6 Suppose that the small investors are equity investors that can redeem at T1. In

28When investors give the fund notice of their redemptions, the hedge fund�s mark-to-market asset value is 1. As

long as it starts to liquidate its asset, the realized liquidation value is given by the downward-sloping sale price.
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equilibrium, FI-B�s threshold is L�B, as given in Lemma 1, while the small investors�threshold is

L�S(dH ; dB) = L
�
B(dB) + ��

2�

1� � �m(K;R; f; dH ; �);

where m = (1� �)
�

Z 1��

0
4 �w(u)du

�

Z 1��

0
4 �w(u)du+

Z 1��

0
4ŵ(u)du

.

Proof. See Appendix.

Proposition 6 means that, in equilibrium, there is a proportion m of small investors that run

before the large lender does (where m is di¤erent from the one in Corollary 1). Hence, the results

in Propositions 3 and 4 do not change.

In order to mitigate the potential run by investors, a hedge fund can incorporate gates and

redemption fees in the contract with their client investors. We will now analyze the impact of these

measures on runs. First, suppose that there exist fund-level gates that limit the total redemptions

at T1 up to � proportion of the overall net asset value of the hedge fund, where � � 1� �. Then,

the equilibrium is given by�
1� L

�
B � L�S + �

2�

�
1

1� �

Z �

0
4 �w(u)du+ L

�
B � L�S + �

2�

1

1� �

Z �

0
4ŵ(u)du = 0.

Corollary 2 (Gate Provisions) Suppose the hedge fund contract has fund-level gates where the

maximum allowable redemption is � proportion of the overall net asset value. Then, m(K;R; f; dH ; �)

in Proposition 6 becomes

m = (1� �)
�
Z �

0
4 �w(u)du

�
Z �

0
4 �w(u)du+

Z �

0
4ŵ(u)du

.

We have comparative statics that L�S is decreasing in � (for some region of �).

Proof. See Appendix.

Corollary 2 says that when hedge funds incorporate gates, small investors have less incentive

to run. The intuition is easy to understand. When there is an upper limit on redemption, the risk

of miscoordination among small investors in rollover becomes lower (that is, an individual small

investor becomes less worried that other small investors may run on the fund). So in equilibrium,

every small investor becomes more willing to stay with the fund and sets a higher L�S .
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Second, suppose that the hedge fund charges a small investor a redemption fee � for redemptions

at T1.29 Then, the equilibrium is given by�
1� L

�
B � L�S + �

2�

�
1

1� �

Z 1��

0
4 �w(u)du+ L

�
B � L�S + �

2�

1

1� �

Z 1��

0
4ŵ(u)du = ��.

Corollary 3 (Redemption Fees) Suppose that the hedge fund imposes a redemption fees �. Then,

m(K;R; f; dH ; �) in Proposition 6 becomes

m = (1� �)
�
Z 1��

0
4 �w(u)du� �

�
Z 1��

0
4 �w(u)du+

Z 1��

0
4ŵ(u)du

.

We have comparative statics that L�S is increasing in �.

Proof. See Appendix.

Corollary 3 clearly shows that the existence of redemption fees discourages small investors from

running, leading them to set a higher running threshold L�S .

3.3 Welfare implications of provisions and regulations

We can extend the welfare analysis to consider the e¤ect of minimum haircuts in the dealer to the

hedge fund market, the role of the exemption from the automatic stay of the dealer funding (in the

case of repos and derivative funding), as well as capital and liquidity requirements for the dealers.

In the context of our model, the e¤ect of all these provisions and regulations is essentially embodied

in the way the changes in the balance sheet position of FI-B impact its decision to lend to FI-H.

Conveniently, we can model the e¤ect by studying the comparative statics on parameters L and �.

A lower L means tighter capital and liquidity requirements. A higher � means that even though

market liquidity dB has changed, the lending policy of FI-B to FI-H is less a¤ected; hence, a lower

� can be mapped into the provisions of higher minimum haircuts and of greater exemption from

the automatic stay of the dealer funding. It is easy to obtain the following comparative statics:

@L�B
@�

> 0 and
@L�B
@L

> 0:

In Figure 9, a higher � or L shifts the curve to the right, corresponding to a welfare gain.
29For simplicity, we assume that the fees go to the hedge fund�s unlimited partners � internal equityholders.
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3.4 Rationale behind the Value-at-Risk (VaR) constraint

In the main model, we have taken the VaR risk management as exogenous. VaR can be rationalized

in a broader model that incorporates both the downside and the upside of the VaR constraint.

The basic intuition is as follows. Financial �rms su¤er from moral hazard problems with insider

managers (from the CEO all the way down to loan and investment o¢ cers), such as excessive risk

taking, leniency in screening on loans and investment, and shirking in monitoring on investment

and lending. VaR risk management is an e¤ective internal control device that helps to mitigate the

moral hazard problems.

In the context of our model, we can extend the main model in a simple way to rationalize

the VaR constraint. Without the VaR constraint in place at the interim date T1, the managers�

compensation could only be determined based on their performance at the �nal date T2; in this

case, the managers would have incentives to behave opportunistically and conduct (o¤-equilibrium)

excessive risk-taking in investment ex ante at T0 leading to a negative (expected) NPV in the spirit

of risk shifting in Jensen and Meckling (1976). By contrast, with the threat of the VaR constraint,

the managers are disciplined not to take excessive risk ex ante, otherwise the VaR constraint will

be violated at the interim date T1 and the managers will be punished/�red. This is the upside of

the VaR constraint. Of course, when an aggregate shock hits (i.e., an adverse shock on dB, perhaps

with a small probability ex ante), the VaR constraint has negative consequences, which is the focus

of study of our main model.

3.5 Optimal creditor structure of FI-H

In this subsection, we extend the main model to analyze the optimal creditor structure for a �nancial

institution, by making � endogenous. The analysis incorporates both the upside and the downside

of wholesale �nancing.

We slightly modify the setup of the main model to have a more abstract creditor-run game.

We assume that FI-H�s long-term asset realizes one of two payo¤s at T2, fX; 0g, where X > 0.

Ex ante, the probability that X is realized is �. The term � represents the fundamentals of the

asset held by FI-H, and � has an (improper) uniform prior over the real line. The liquidation value

of the long-term asset at T1 is a constant L, where L < K. Recall that the face value of FI-H�s

debt at T1 is K; with notional value at T2 of KR. Therefore, if a proportion greater than L
K of
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the creditors call the loans at T1, the liquidation value of the asset will not be su¢ cient to satisfy

the creditors�claims, and consequently FI-H will fail. Alternatively, one might think of L as the

available collateral from FI-H�s asset. This means that FI-H is able to raise an amount of cash at

T1 no larger than L. If the demand of FI-H�s creditors for cash exceeds L at T1, FI-H will fail in a

classic bank run fashion.

Following the work of Rochet and Vives (2004) and Morris and Shin (2009), Table 1 shows the

simpli�ed creditor-run payo¤ structure.

Calling proportion no greater than L
K

(FI-H survives)

Calling proportion greater than L
K

(FI-H fails)

Hold KR (at T2) 0 (at T2)

Call K (at T1) K (at T1)

Table 1: Creditor-run payo¤ structure of the extended model

To make the problem interesting, we focus on the case where the proportion of the loan from the

large lender is not too large. Concretely, we consider � � L
K � 1�� (that is, � � minf LK ; 1�

L
K g),

where � represents the proportion of FI-B�s loan in FI-H�s total debt. The �rst inequality means

that a run solely by the large lender is not su¢ cient to cause FI-H to fail; the second inequality

means that if all the small lenders run, FI-H may fail even if the larger lender stays put.

We consider that FI-H�s creditors face fundamental risk in addition to the coordination risk

among themselves. Fundamental risk was not necessary in analyzing the two ampli�cation mecha-

nisms in the main model, but is now helpful for studying in a simple way the optimal �. Speci�cally,

at T1, both the large lender FI-B and the small lenders receive imperfect information (signals) about

�. The large lender observes the realization of the random variable �B = � + ��, where � > 0 is

a constant and � is a random variable with mean zero and smooth symmetric density h(�), and

cumulative distribution function H(�). Similarly, the small lender i�s signal about � is �i = �+ ��i,

where � > 0 is constant, and the individual speci�c noise �i is distributed according to the smooth

asymmetric density g(�) (denoting its c.d.f. by G(�)). �i is i.i.d. across small lenders, and each is

independent of �.30

30The probability � lies in the interval [0; 1] while the signal�s range is [�1;+1]. However, this is for technical
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FI-B may be constrained at T1, in which case it has to call its loans from FI-H. At T1, all

(small) lenders receive a common signal q (2 [0; 1]) � the probability of FI-B being constrained;

FI-B knows perfectly whether it itself is constrained or not. The signal q is equivalent to public

information in global games. Ex ante, at T0, q has probability density z(q).

We conduct the analysis by backward induction, from T1 to T0.

3.5.1 Equilibrium at T1

We are interested in the equilibrium where every lender uses a threshold strategy. The strategy

of the small lenders is given by (�i; q)7�!

8<: Call �i � x�(q)

Hold �i > x�(q)
, where x�(q) is the threshold. The

strategy of the large lender is given by �B 7�!

8<: Call �B � y�(q)

Hold �B > y�(q)
, where y�(q) is the threshold.31

We consider �rst the small lenders�strategy. By symmetric equilibrium (among small lenders),

conditional on all other small lenders using the threshold strategy with the threshold being x� and

the large lender using the threshold y�, an individual small lender�s optimal threshold should be

x� as well. That is,Z +1

�1
fI(�(�;x�)(1� �) � L

K
) � (KR � �) �

�
(1� q) Pr(�B > y�j�)

�
+

I(�(�;x�)(1� �) + � � L

K
) � (KR � �) �

�
q + (1� q) Pr(�B � y�j�)

�
gg(�jx�)d� = K,

(13)

where I is a logical function de�ned as I(t) =

8<: 1 if t is true

0 otherwise
, �(�;x�) = G(x

���
� ), measuring

the fraction of small lenders that withdraw for a given realization of � when all small lenders use

the threshold x�, and g(�jx�) = dG( ��x
�

�
)

d� is the posterior density function.

Equation (13) expresses the decision of the marginal small lender whose signal is just equal to

x�; the LHS is its conditional expected payo¤ for not withdrawing while the RHS is the payo¤

convenience. In fact, later when we consider the limiting case of � ! 0 and � ! 0, the probability of signals falling

outside [0; 1] is negligible. In particular, as in Goldstein and Pauzner (2005), we can use a more complicated setup

where there is a one-to-one mapping � 2 [0; 1]! [�1;+1], and agents receive signals about the value of the mapping

rather than directly about �.
31The large lender�s threshold y� is also a function of q. The large lender knows that the small lenders know q, the

higher order beliefs.
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for withdrawing. For a given realization of �, there is no uncertainty on the aggregate fraction

of the small lenders withdrawing, that is, �(�;x�) is determined. The large lender, however, may

or may not withdraw, and that depends on whether it is constrained, as well as on the strength

of its signal; for a given realization of �, the probability of the large lender not withdrawing is

(1� q) Pr(�B > y�j�), and the probability of withdrawing is q+ (1� q) Pr(�B � y�j�). Conditional

on FI-B not withdrawing, FI-H survives at T1 if �(�;x�)(1 � �) � L
K ; and conditional on FI-B

withdrawing, FI-H survives when �(�;x�)(1 � �) + � � L
K . If FI-H survives at T1, the lender�s

expected payo¤ at T2 is KR � � for a given realization of �. Because the lender does not know �

and only receives a signal x�, its conditional expected payo¤ is the LHS of equation (13).

Consider next FI-B�s strategy. If FI-B is constrained at T1, it withdraws the loans to FI-H. If

FI-B is not constrained at T1, its optimal threshold y� satis�es the conditionZ +1

�1

�
I(�(�;x�)(1� �) � L

K
) � (KR � �)

�
h(�jy�)d� = K; (14)

where h(�jy�) = dH( ��y
�

�
)

d� is the posterior density function. The LHS of equation (14) represents

FI-B�s expected payo¤ if it does not withdraw, while the RHS is FI-B�s payo¤ if it withdraws.32

Note that on the LHS, since FI-B does not withdraw and only the small lenders might withdraw,

FI-B�s expected payo¤ is I(�(�;x�)(1� �) � L
K ) � (KR � �) for a given realization of �.

The equilibrium of the creditor-run game is characterized by equations (13) and (14). Propo-

sition 7 follows.

Lemma 3 There is a unique threshold equilibrium for the creditor-run game that solves the system

of equations (13)-(14).

Proof. See Appendix.

We now proceed to characterize the equilibrium. As in Corsetti et al. (2004), we characterize

the equilibrium by focusing on the limit case where � ! 0, � ! 0, and �
� ! c. In other words, both

the large lender and the small lenders have precise information, but the noise of the large lender�s

signal relative to that of the small lenders�signals tends to c, with 0 � c � +1. The limit case is

used for tractability. We can show that in the limit, FI-H fails at T1 if and only if � � ��, where ��

denotes the failure threshold of FI-H (see the appendix).

32Both sides of equation (14) should be multiplied by �:
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We conduct comparative statics and provide an answer to the following question: How does the

failure threshold �� behave as � and q change? We express �� as a function of � with parameter q,

written as ��(�; q)), which has the following property.

Lemma 4 For a given q, ��(�; q) is increasing in � when q is su¢ ciently high, and decreasing in �

when q is su¢ ciently low. For a given �, an increase in q leads to an increase in �� (point-wisely)

in an upward spiral (@x
�

@q > 0,
@y�

@x� � 0,
@x�

@y� > 0).

Proof. See Appendix.

Lemma 4 says that the presence of a large lender can act as either a stabilizing or a destabilizing

force. When the large lender is more likely to be constrained (i.e., a higher q), the larger the size of

�, the more fragile FI-H is. On the opposite, when the large lender is less likely to be constrained

(i.e., a lower q), the larger the size of �, the less fragile FI-H is. The two polar cases of q = 0

and q = 1 help illustrate the intuition. With q = 0, the large lender knows perfectly whether

it itself will withdraw and thus faces the risk of coordination only with the small lenders. By

contrast, each individual small lender (with a negligible mass) faces the risk of coordination with

other small lenders, as well as with the large lender. Therefore, the presence of the large lender

reduces the overall di¢ culty of coordination among the lenders. With q = 1, the large lender runs,

and therefore it is harder for the remaining lenders (i.e., the small lenders) to coordinate to not run

as � increases. They thus run sooner (at a higher threshold), making FI-H�s failure more likely.

Figure 11 reports a numerical example of ��(�; q) for di¤erent values of q, where the parameters

are K = 1, L = 0:52, R = 2:5, � = � = 0:0001, and minf LK ; 1�
L
K g = 0:48. H and G are standard

normal.
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Figure 11: Function ��(�; q)

3.5.2 Equilibrium at T0

We are now able to address the main question in this extended model: does an optimal creditor

structure for FI-H exist (i.e., an optimal size of �)? Ex ante, at T0, q has the probability distribution

z(q). FI-H aims to minimize the expected value of the failure threshold �� at T1. Therefore, FI-H�s

optimization problem at T0 is

min
�

Z 1

0
��(�; q)z(q)dq (15)

In general, the optimization problem in (15) has a unique interior solution.

Proposition 7 Under some probability distribution z(q), there is a unique optimal � 2 (0; 1). That

is, FI-H has a unique optimal creditor structure.

Proof. See Appendix.

The intuition behind Proposition 7 is the following. The presence of a large lender can be good

or bad, depending on the state of q at T1. When q is high, the presence of the large lender increases

the fragility of FI-H. Conversely, when q is low, the presence of the large lender helps mitigate the

coordination problem among the lenders, reducing the fragility of FI-H. Ex ante, given a probability

distribution of q, FI-H chooses a unique optimal size of � at T0.
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Continuing the numerical example above, we choose a simple discrete distribution for z(q) where

z(q) =

8<: 0:9 for q = 0

0:1 for q = 1
. In this case, we �nd that the optimal � is �� = 0:36, which is between 0

and minf LK ; 1�
L
K g = 0:48.

3.5.3 Endogenous q

Suppose that the probability q is not a constant at T1 but a function q(�;!), where � is the

aggregate withdrawals by FI-H�s small lenders (i.e., �(�;x�) = G(x
���
� )) and ! is a parameter

describing market conditions or the degree of systemic risk at T1, with
@q(�;!)
@� > 0 and @q(�;!)

@! > 0.

The economic interpretation of q(�;!) is the following. The withdrawals by its creditors impact FI-

H�s �nancial health, in turn a¤ecting the liquidity of the market where FI-B operates and, therefore,

FI-B�s funding availability. That is, the probability that FI-B is constrained is partly determined

by FI-H�s status such as �. Essentially, q(�;!) is a reduced-form result of the micro-foundation

analysis in Section 2.2.2.

At T1, all the small lenders in FI-H observe ! (instead of a constant q) and their threshold

strategy becomes (�i; !)7�!

8<: Call �i � x�(!)

Hold �i > x�(!)
, where x�(!) is the threshold. We can show

that an endogenous q creates additional ampli�cations. In fact, when we substitute q(�;!) for q in

equation (13), an additional feedback loop emerges: @q
@� > 0;

@x�

@q > 0 and
@�
@x� > 0. This feedback

loop (i.e., the second ampli�cation) and the original feedback loop (i.e., the �rst ampli�cation)

interact and reinforce each other, and form a compound spiraling e¤ect. Formally, @q@! > 0;
@x�

@q > 0,
@y�

@x� � 0,
@x�

@y� > 0,
@�
@x� > 0,

@q
@� > 0. Therefore, a small shock to the realization of ! at T1 can have

a large impact on the equilibrium �� when solving the system of equations (13)-(14).

At T0, FI-H knows the probability distribution of !, and chooses an optimal � that minimizes

the expected value of the failure threshold �� at T1.

In sum, if we incorporate the liquidity spiral into the current extended model, the optimal

size of the large lender � can become smaller because of this additional negative side of wholesale

�nancing (i.e., the downward liquidity spiral caused). That is, at T0 FI-H relies less on the large

lender�s funding.
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4 Empirical Evidence and Implications

We discuss the empirical implications of the model and the evidence on hedge funds.

4.1 The creditor channel

Hedge funds have often been seen as a source of risk in modern �nancial markets. Since the event

of LTCM, regulators have endeavored to impose tough regulations on hedge funds. However, the

2007-2009 crisis has shown that it was the banking sector, in their role as creditors, that spread

the �nancial problems to the hedge fund sector, and not the other way round. Evidence of this is

mounting. Mitchell and Pulvino (2012) document the spread of liquidity shocks from the broker-

dealer sector to the hedge fund sector, in turn, limiting arbitrages of hedge funds. Aragon and

Strahan (2012) �nd that the �nancial problems of prime brokers interrupted the activities of hedge

funds. Along this line, the Economist wrote in the middle of the crisis: �Regulators used to worry

about the danger hedge funds might pose to their prime brokers... the risk turned out to be the

other way round.�33

In this paper we highlight one reason for bank credit to stop �owing: the precautionary liquidity

hoarding of market-based lenders. Our explanation relies on the fact that lenders nowadays are often

market-based leveraged institutions, and are therefore subject to market conditions.34 Acharya and

Merrouche (2013) document banks hoarding liquidity for precautionary motives in the 2007-2009

crisis. The �ndings of Shin (2009) support the view that the reduction of exposures by lenders

arises from risk management of potential losses.

4.2 The liquidity-triggered run

In our model, small investors play an important role. They are long-term investors not subject to

balance sheet constraints, and therefore they can be seen as true spare liquidity providers to the

�nancial system. However, they may decide to withdraw if they become worried that other investors

might withdraw, in particular the large lender. Therefore, the run by small investors in our model

33�Hedge Funds in Trouble: The Incredible Shrinking Funds�, Economist, October 25-31 2008, pp. 87-88.
34This explanation di¤ers from and complements the typical �nancial-contagion explanation (see, e.g., Allen and

Gale (2000)) where there is some realized loss (in some other geographic locations) of traders. In our paper, market

liquidity changes, causing the risk of potential loss (in lenders�asset base), explain a credit reversal.
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is triggered by concerns on the liability side.35 Importantly, the run by small investors in our model

is not purely self-ful�lling (i.e., sunspot equilibrium) as in Diamond and Dybvig (1983). Instead,

small investors have material reasons to run, as they understand that some other (large) lenders

may be facing balance sheet constraints and are likely to withdraw. Putting it slightly di¤erently,

the run in our model does not arise out of the blue; rather, the run is triggered when some market-

based large lenders are suspected of becoming constrained and threatening the liquidity status of

the borrower.

According to the International Financial Services London (IFSL), the hedge fund industry

su¤ered severe runs and faced unprecedented pressure from investors for redemptions in 2008.

Based on their estimates, investors pulled more than $300 billion from hedge funds in the second

half of 2008.36 Interestingly, the Economist wrote, �The [hedge] industry�s aggregate leverage has

undoubtedly caused it trouble. But there does not appear to have been a systematic withdrawal

of bank credit from hedge funds....A fuller explanation must include the increasingly jittery nature

of hedge funds�clients�. We argue that one important reason for the �ight of hedge fund investors

was that the primary brokers at banks were in trouble and bank lending was tightening. Investors

worried that the tightening of bank credit would force hedge funds to liquidate positions at big

losses. They got scared and rushed to exit.37

4.3 The feedback e¤ect

Our model highlights a second ampli�cation mechanism � the feedback from the hedge fund

sector to the banking sector. Some evidence is available. Aragon and Strahan (2012), using the

September 15, 2008 bankruptcy of Lehman Brothers as an exogenous shock, �nd that stocks traded

by Lehman-connected hedge funds experienced greater declines in market liquidity following the

35Received wisdom usually attributes the trigger for the bank run on Northern Rock, a UK bank, to its mortgage

assets. Shin (2009), however, provides convincing evidence showing that this was not the main reason for the run.

Shin argues: �[Northern Rock] was with an apparently solid asset book, with virtually no subprime lending... Rather,

its problems stemmed from its high leverage coupled with reliance on institutional investors for short term funding.

When the de-leveraging in the credit markets began in August 2007, it was uniquely vulnerable to the shrinking of

lender balance sheets arising from the tick-up in measured risks.� According to Shin (2009), the run on Northern

Rock stemmed from its large lenders, the liability side of its balance sheet, rather than from the asset side.
36�Hedge Funds 2009�, the International Financial Services London Research (IFSL).
37Ang et al. (2011) �nd that during the recent �nancial crisis hedge fund leverage reduced precisely when large

�nancial intermediates, an important source of lending for hedge funds, became more �nancially constrained.
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bankruptcy than other stocks. They thus conclude that hedge funds are market-liquidity providers.

Mitchell and Pulvino (2012) show that the crippling of hedge funds led to high mispricings in the

�nancial markets, meaning that the markets became less informationally e¢ cient and less liquid.

Coval and Sta¤ord (2007) and Hau and Lai (2011) also provide evidence along the same line. We

argue that the reduced market liquidity in turn impacts banks�decisions. When market liquidity

dries up, banks face greater uncertainty in their balance sheets, and tend to reduce exposure and

hoard liquidity.

5 Concluding Remarks

This paper analyzes the transmission of liquidity shocks through the creditor channel and highlights

two intertwining ampli�cation mechanisms. We are interested in a positive question: what do

�nancial institutions do and what is the chain reaction given the �nancial structure that �nancial

institutions have adopted in practice? In future work, we wish to study a related normative

question: what is the ex-ante optimal structure?

With respect to policy implications, we remark that in modern �nancial markets it is important

to consider not just the risk of the assets of a �nancial institution, but also the risk that stems

from both the degree of indebtedness and the structure of its creditors. Institutions that depend

in a signi�cant way on funds from the wholesale markets must be closely monitored, and may need

to satisfy particular risk-control requirements. Financial regulators must consider whether limits

on leverage combined with limits on the relative share of lending by large lenders, when these are

�nancial investors, are the more appropriate regulations. Regulators must take a systemic view to

monitor both borrowers�behavior and lenders�actions, because what happens to these lenders may

drastically a¤ect not just the borrower institution directly but also indirectly the actions of other

lenders.
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Appendix

A Proofs

Proof of Lemma 1: By applying AS +AL1+ = D + E1+, we can rewrite (3) as

Pr(AL1+ < D
L

L� 1
�AS) < �: (A.1)

Denote the �-percentile of AL1+ � N(v; �2d2B) as C, that is, � � �(C�v�dB
). Obviously, C(dB) is a

decreasing function with respect to dB, considering that � < 1
2 . Using dB, (A.1) is transformed

into

D
L

L� 1
�AS < C(dB): (A.2)

At T1, FI-B receives perfect information about the market depth, dB. If dB is high, the market

is illiquid and the RHS of (A.2) is low. In this case, the inequality (A.2) may be violated. Then,

to comply with risk management requirements and satisfy (A.2), FI-B delevers. It does so by

calling the short-term loans extended to FI-H and using the proceeds to repay the debt. To see

this, suppose that FI-B calls the short-term loans in the amount of 4AS > 0, and repays its

outstanding debt. The LHS of (A.2) becomes

(D �4AS) L

L� 1
� (AS �4AS)

= (D
L

L� 1
�AS)�4AS � 1

L� 1

< D
L

L� 1
�AS :

We can re-write (A.2) in terms of (E0, L0):

L0 < L�
v � C(dB)

E0
� (L� 1): (A.3)

De�ne L�B(dB) � L�
v�C(dB)

E0
� (L� 1), which is decreasing in dB. So Lemma 1 is obtained.

Proof of Lemma 2: First, additional assumptions that make the problem interesting include:

E[min( eX;KR)] > K: If no creditor calls the loan at T1, the expected debt payo¤ for a creditor
at T2, which is E[min( eX;KR)], is higher than the debt payo¤ at T1;
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�(1) = f � dH < K: If all creditors call their loans at T1, FI-H goes bankrupt at T1, because

even if FI-H liquidates its whole asset at T1, the revenue generated is not su¢ cient to cover the

face value of the debt;

f > 2dH : This assumption is purely for technical reasons. It makes the revenue function �(s)

monotonically increasing in s in the interval s 2 [0; 1].

Second, we prove Lemma 2. We divide u into two regions: low u and high u. In the �rst region

where u is low, FI-H does not need to liquidate its whole asset to repay the early-withdrawing

creditors. The staying creditors still obtain a positive payo¤ at T2. In this case, the payo¤ of calling

the loan at T1 is K, while the payo¤ of holding is
E[min((1�s) eX;(1�u)KR)]

1�u = E[min( 1�s1�u
eX;KR)],

where s is the proportion of asset that is sold to honor those creditors that decide to withdraw early.

Note that s solves u �K = �(s). Therefore, s = f�
p
f2�4uKdH
2dH

. Using s = f�
p
f2�4uKdH
2dH

, we have

the payo¤ function for extending the loan; that is, wH(u) = E[min( (2dH�f)+
p
f2�4uKdH

2(1�u)dH
eX;KR)].

In the second region, where u is high, FI-H needs to liquidate its whole asset. The creditors that

stay obtain 0, and the calling creditors divide all the liquidation value. Each creditor that calls

the loan at T1 obtains
f�dH
u . The threshold between the �rst and the second region is the u that

solves f�
p
f2�4uKdH
2dH

= 1. The threshold value of u is, after simple computation, equal to f�dH
K .

Proof of Proposition 1 and Corollary 1: We proceed in several steps. First, we compute

the aggregate proportion of lenders calling loans for a given L0, conditional on every small lender

using the threshold L�S . Given that the small lenders�signals are uniformly distributed in [L0 � �,

L0 + �], the fraction of small lenders calling is
L0+��L�S

2� . We have the aggregate calling function:

u(L0) =

8>>>>>><>>>>>>:

0 L0 < L
�
S � �

(1� �)L0+��L
�
S

2� L�S � � � L0 < L�B
�+ (1� �)L0+��L

�
S

2� L�B � L0 � L�S + �

1 L0 > L
�
S + �

; (A.4)

where u(L0) is the aggregate proportion of lenders (large and small lenders) calling for a given L0.

There is a discrete jump at L0 = L�B, because the large lender also calls when L0 = L
�
B(dB). Figure

A-1 depicts u(L0).
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Figure A-1: Proportion of lenders withdrawing

Second, we consider the position of the marginal small lender that receives the signal L�S . Since

the payo¤ for a lender is a function of u, we wonder what the distribution of u is in the eyes of

the marginal lender. From the improper prior distribution of L0, the posterior density of L0 in the

eyes of the marginal lender is uniform over the interval [L�S � �, L�S + �]. Because u is a function

of L0, the density of u in the marginal lender�s eyes is given by

g(u) =

8<: 1
1�� u 2 [0; (1� �)L

�
B+��L�S
2� ] [ [�+ (1� �)L

�
B+��L�S
2� ; 1]

0 u 2 ((1� �)L
�
B+��L�S
2� , �+ (1� �)L

�
B+��L�S
2� )

: (A.5)

The discontinuity in the support of g(u) comes from the jump in the function given by (A.4).

Figure A-2 depicts the density g(u).

Figure A-2: Density of g(u)
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Third, since the marginal small lender is indi¤erent to holding versus calling, the expectation

of his net payo¤ from holding (versus calling) is 0:Z 1

0
4 w(u) � g(u)du = 0: (A.6)

From (A.6), we obtain the unique L�S .

Figure A-3: Unique equilibrium

Importantly, equation (A.6) gives a geometrical presentation of �nding the equilibrium. In the

4w � u space in Figure A-3, the equilibrium means that a (starting) point in the u-axis needs to

be located such that if we cut a �-width block horizontally starting from that point, the area of

the remaining part above the u-axis (i.e., the shaded area above) should be equal to the area below

the u-axis (i.e., the shaded area below). We denote the u-coordinate of this starting point by m,

which is a deterministic function of K, R, f , dH and �. Formally, m solves the equationZ m

0
4 w(u)du+

Z 1

m+�
4 w(u)du = 0:

From (A.4), we also know thatm = (1��)L
�
B+��L�S
2� . Therefore, we obtain the equilibrium threshold:

L�S = L
�
B(dB) + ��

2�

1� � �m(K;R; f; dH ; �): (A.7)

Fourth, we consider the condition for the unique equilibrium. From the proof of Proposition

1, � should be su¢ ciently large to guarantee that a starting point m exists. Figure A-4 illustrates
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how to calculate the minimum � that guarantees the existence of an equilibrium. The minimum

�, denoted by �, is the width of the cutting block such that the sum of the remaining area, after

cutting, is zero (i.e., the two shaded areas cancel each other). In fact, when � ! 0, the bank run

converges to the outcome in Diamond and Dybvig (1983), where multiple equilibria exist.

Figure A-4: Existence of equilibrium

Fifth, we have Corollary 1. From the proof above, we see that m is independent of the threshold

L�B. That is, no matter what threshold strategy the large lender uses, given the large lender�s

threshold strategy, the equilibrium among the small lenders results in a proportion m of them

withdrawing before the large lender does.

Finally, to complete the proof, we need to show that a small lender prefers to call (hold) if its

signal Li0 is higher (lower) than L
�
S . The proof is similar to that in Goldstein and Pauzner (2005).

In our model, 4w(u) is not a strictly monotonically decreasing function of u. But it satis�es

the �single crossing property�. In fact, if Li0 > L�S , the density g(u) in the small investor i�s eyes

can be obtained from the original density function (A.5), by transferring weight from the interval

[0; (1��)L
i
0�L�S
2� ] to the atom on point u = 1. Geometrically, this is equivalent to taking a slice from

the positive part of the shaded area above the u-axis in Figure A-3 and adding it to the negative

part of the shaded area. So the sum of shaded areas becomes less than 0, which means holding

(versus calling) has a negative payo¤. Calling is then the optimal strategy. A similar argument

applies in the opposite case: Li0 < L
�
S .
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Proof of Proposition 2: Suppose that the large lender uses a strategy di¤erent from the one in

Lemma 1. Clearly, due to the risk management requirement, FI-B cannot use a threshold high than

L�B(dB). It can only use a lower threshold. Let the new threshold be L
��
B , where L

��
B < L�B(dB).

Given that small lenders use the strategies in Proposition 1, the aggregate proportion of calling

u(L0) in (A.4) when the large lender sets its threshold as L�B versus L
��
B is plotted as follows:

Figure A-5: Proportion of lenders withdrawing under an alternative strategy

From Figure A-5, the large lender�s action is di¤erent under the two thresholds only when

L��B < L0 < L�B(dB). Therefore, we focus on the discussion in the interval L0 2 (L��B ; L�B(dB)).

Under the original threshold L�B(dB), the large lender rolls over the loan. We can conclude that

under the original threshold the large lender�s payo¤ is at least equal to wH(m) because u < m

as seen in Figure A-5 and wH(�) is non-increasing. Under the new threshold L��B , the large lender

calls. Its payo¤ is determined by the function wC(�). Because of � � �(K;R; f; dH), we have

m < �T , which is shown in Figure A-3, where �T solves 4w(�T ) = 0 or wH(�T ) = wC(�T ).

So, wH(m) > wH(�T ) by the property that wH(u) is decreasing when u � �T . Furthermore,

as shown in Figure 2(a), we have wC(�T ) � wC(u) for any u 2 [0; 1]. Therefore, by combining

wH(m) > wH(�T ), wH(�T ) = wC(�T ), and wC(�T ) � wC(u), we have wH(m) > wC(u) for any

u 2 [0; 1]. We can then conclude that the payo¤ to the large lender is always higher by using the

threshold L�B(dB) than by using the threshold L
��
B . The large lender has no incentive to use a

strategy di¤erent from that in Lemma 1.

44



Proof of Proposition 3: Consider that FI-B uses the threshold L�
0
B = L � v�C0 (dB)

E0
� (L � 1)

and small lenders use the threshold L�
0
S = L

�0
B(dB) + � � 2�

1�� �m(K, R, f , dH , �). We prove that

these strategies are the best responses to each other. By (A.7), we know that the strategy of small

lenders is the best response to that of FI-B. Now we prove that the opposite is true.

We �x L0. Given the �xed L0, we de�ne a cut-o¤ d�B such that L�
0
B jdB=d�B = L0. By the

de�nition of L�
0
B , the risk management constraint is just binding for the leverage level L0 when the

asset value follows the distribution AL1+ � N(v � d�B � s1; �2d�2B ).

We prove that when FI-B observes dB < d�B it holds the loan, and when dB � d�B it calls. Given

the small lenders�strategy and L0, when dB < d�B, there are less than m proportion of small lenders

withdrawing. So the selling from the FI-H is less than s1. Let the selling amount be s
0
1, where s

0
1 <

s1. Therefore, the asset value at T1+ is distributed as AL1+ � N(v � dB � s
0
1; �

2d2B). Considering

dB < d
�
B and s

0
1 < s1, this implies that the mean of the distribution increases while the variance

decreases, relative to the distribution AL1+ � N(v� d�B � s1; �2d�2B ). The two joint forces lead to the

risk management constraint certainly not binding for the leverage level L0. Therefore, FI-B holds.

Similarly, we can prove that FI-B calls when dB � d�B.

Now we will prove the uniqueness of the equilibrium. As in the above analysis, we obtain

that the only strategy that the large lender chooses to play is the one with the threshold being

L�
0
B = L�

v�C0 (dB)
E0

� (L�1). It is not optimal for FI-B to use a di¤erent threshold strategy. In fact,

if it uses a threshold lower than L�
0
B , it loses the interest R (in some states); if it uses a threshold

higher than L�
0
B , its risk management requirement is not satis�ed.

Proof in Section 2.3.1: Consider L�S = L
�
B(dB)+�� 2�

1�� �m(K, R, f , dH , �). Since
@L�B(dB)
@dB

< 0,

we have @L�S(dH ;dB)
@dB

< 0.

In general, we have @m(K;R;f;dH ;�)@dH
> 0 and thus @L

�
S(dH ;dB)
@dH

< 0. Intuitively, if dH increases, the

liquidation value decreases. Hence, in Figure A-3, the shaded area below expands, while the shaded

area above remains the same, which means that the original equilibrium is not valid. In the new

equilibrium, the two shaded areas need to cancel out. So the shaded area above needs to expand.

That is, m has to move to the right and increase. As m(K;R; f; dH ; �) has no closed-forms, we

have to rely on simulation. The simulation result con�rms this. Note that the comparative static

result that @m
@dH

> 0 is not always true because the payo¤ structure of a bank run is not of strict

strategic complementarities. However, we are interested in the general cases. For a wide range of
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parameter values, we have @m
@dH

> 0.

Consider L�
0
B = L � v�C0 (dB)

E0
� (L � 1). As C 0

is the �-percentile of the distribution AL1+ �

N(v � dB � s1; �2d2B), we have @2C
0

@s1@dB
< 0. Since @m(K;R;f;dH ;�)

@dH
> 0 and s1 is increasing in m, then

@s1
@dH

> 0. Thus, @2C
0

@dH@dB
< 0. Therefore, @2L�

0
B

@dH@dB
< 0. Also, because L�

0
S = L�

0
B + � � 2�

1�� �m, we

have @2L�
0
S

@dH@dB
< 0.

Proof of Proposition 5: By (A.4), we have m = (1� �)L
�
B+��L�S
2� . From (8), we obtain

L�B � L�S + �
2�

=

�
Z 1

�
4 w(u)du

�
Z 1

�
4 w(u)du+

Z 1��

0
4 w(u)du

:

Hence, m = (1� �)
�

Z 1

�
4w(u)du

�

Z 1

�
4w(u)du+

Z 1��

0
4w(u)du

.

Proof of Proposition 6: The proof is similar to the proof of Proposition 5.

Proof of Corollary 2: The m in Corollary 2 can be obtained in a similar way to the proof of

Proposition 5. We turn to comparative statics. Because 4ŵ(u) and 4 �w(u) are non-monotonic,

we cannot show the monotonicity of m in the whole domain of �. We focus on the interesting case

such that m is increasing in �. Note that when � is su¢ ciently high,
Z �

0
4 �w(u)du < 0. There

exists � such that j �w(�)jŵ(�) >

�����
Z �

0
4 �w(u)du

�����Z �

0
4ŵ(u)du

. Under this condition, m̂
1�m̂ =

�����
Z �

0
4 �w(u)du

�����Z �

0
4ŵ(u)du

is increasing �,

where m̂ = m
1�� ; therefore, m is increasing in �. So L�S is decreasing in �.

Proof of Corollary 3: The m in Corollary 3 can be obtained in a similar way to the proof

of Proposition 5. We turn to comparative statics. Note that
Z 1��

0
4 �w(u)du < 0. Clearly, m is

decreasing in �, so L�S is increasing in �.

Proof in Section 3.3: By (A.3), 0 < L0 � 1 < (L � 1) �
h
1� v�C(dB)

E0

i
. So 1 � v�C(dB)

E0
> 0.

Considering L�B(dB)� 1 �
�
L� 1

�
�
h
1� v�C(dB)

E0

i
, it is easy to show that @L

�
B

@� > 0 and @L�B
@L

> 0.
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Proof of Lemma 3: Equations (13) and (14) can be rewritten as (A.8) and (A.9), respectively:

�=x���G�1(
L
K
��

1�� )Z
�=x���G�1(

L
K
1�� )

(KR � �) � (1� q)H(� � y
�

�
)dG(

� � x�
�

) +

�=+1Z
�=x���G�1(

L
K
��

1�� )

(KR � �)dG(� � x
�

�
) = K;

(A.8)

�=+1Z
�=x���G�1(

L
K
1�� )

(KR � �)dH(� � y
�

�
) = K: (A.9)

We denote the LHS of (A.8) by F s(x�; y�), which is a function of x� with parameter y�. Similarly,

the LHS of (A.9) is denoted by F l(y�;x�), which is a function of y� with parameter x�.

First, we prove that equation (A.8) has a unique solution with respect to x� for a given y�. To

show this, we prove that F s(x�; y�) is monotonically increasing in x�. That is, F s(x� +4; y�) >

F s(x�; y�) for any x� and 4 > 0. In fact,

F s(x� +4; y�)

=

�=(x�+4)��G�1(
L
K
��

1�� )Z
�=(x�+4)��G�1(

L
K
1�� )

KR��
1

(1�q)H( ��y
�

�
)

� dG( ��(x
�+4)
� )+

�=+1Z
�=(x�+4)��G�1(

L
K
��

1�� )

(KR � �)dG( ��(x
�+4)
� )

=

�
0
=x���G�1(

L
K
��

1�� )Z
�
0
=x���G�1(

L
K
1�� )

KR�(�0+4)
1

(1�q)H( (�
0
+4)�y�
�

)

� dG( �
0�x�
� ) +

�
0
=+1Z

�
0
=x���G�1(

L
K
��

1�� )

(KR � (�0 +4))dG( �
0�x�
� )

> LHS of (A.8)

= F s(x�; y�).

The third line above is obtained when we substitute �
0
= � �4 into the second line. Further,

it is easy to show that F s(x�; y�) < K when x� is very low and F s(x�; y�) > K for a very high x�.

Therefore, F s(x�; y�) = K has a unique solution.

We denote the unique solution to (A.8) by x�(y�). We have the following properties regarding

x�(y�): The solution x�(y�) is increasing in y� and has a bounded range denoted by (x�; x�), where

x� is the lower bound and x� is the upper bound. In fact, it is easy to show that @F s(x�;y�)
@y� < 0

(for q < 1).38 Combining this with @F s(x�;y�)
@x� > 0, we have dx�(y�)

dy� = �
@Fs(x�;y�)

@y�
@Fs(x�;y�)

@x�
> 0. As

38When q = 1, the system of equations (A.8) and (A.9) is reduced to equation (A.8), which clearly has a unique
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for the boundness, in (A.8), when y� = �1 (respectively +1), it follows that H( ��y
�

� ) = 1

(respectively 0) and therefore (A.8) admits bounded solutions. That is, x�(y�)jy�=�1 = x� > �1

and x�(y�)jy�=+1 = x� < +1.

Second, it is easy to prove that equation (A.9) has a unique solution with respect to y� for a

given x�. We denote the unique solution by y�(x�). It also follows that y�(x�) is an increasing

function with the slope dy�(x�)
dx� < 1. In fact, if both x� and y� increase by same amount in (A.9),

the RHS would exceed the left hand side; so y� has to increase less than x� in order to keep the

equality.

Third, now we are able to prove that the system of equations (A.8) and (A.9) has solutions.

This result follows from the fact that x�(y�) and y�(x�) are both increasing functions and x�(y�)

is bounded within (x�; x�). So the �xed point problem has a unique solution. In fact, by (A.9), we

have y�(x�)jx�=x� > �1 and y�(x�)jx�=x� < +1. Combining this with x�(y�)jy�=�1 = x� and

x�(y�)jy�=+1 = x�, we conclude that the two curves of x�(y�) and y�(x�) interact and hence the

system of equations has solutions.

Finally, we prove the uniqueness of solutions. We prove by contradiction. Suppose there exist

two pairs of solutions for the system of equations (A.8) and (A.9). Let them be (x�, y�) and (x�
0
,

y�
0
), where x� < x�

0
and y� < y�

0
. Denote 4 = x�

0� x�. By the property dy�(x�)
dx� < 1 derived from

(A.9) shown above, we have y�
0 � y� < 4: Now we check (A.8) and prove that equation (A.8) is

incompatible with the two pairs of solutions with x�
0
= x� +4 and y�

0
< y� +4. In fact,

F s(x�
0
; y�

0
)

> F s(x� +4; y� +4)

=

�=(x�+4)��G�1(
L
K
��

1�� )Z
�=(x�+4)��G�1(

L
K
1�� )

(KR��)�(1�q)
1

H(
��(y�+4)

�
)

dG( ��(x
�+4)
� ) +

�=+1Z
�=(x�+4)��G�1(

L
K
��

1�� )

(KR � �)dG( ��(x
�+4)
� )

=

�
0
=x���G�1(

L
K
��

1�� )Z
�
0
=x���G�1(

L
K
1�� )

(KR�(�0+4))�(1�q)
1

H(
�
0�y�
�

)

dG( �
0�x�
� ) +

�
0
=+1Z

�
0
=x���G�1(

L
K
��

1�� )

(KR � (�0 +4))dG( �
0�x�
� )

> LHS of (A.8)

= K.

solution by plugging q = 1.
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The second line above follows because @F
s(x�;y�)
@y� < 0. The fourth line is obtained when we apply

�
0
= � �4 in the third line.

To conclude, the system of equations (A.8)-(A.9) has a unique solution and therefore there is a

unique threshold equilibrium for the creditor-run game.

Proof of Lemma 4: As in Corsetti et al. (2004), we focus on the limit case where � ! 0, � ! 0,

and �
� ! c. The limit case is used for tractability. In the limit, FI-H fails at T1 if and only if

� � ��, where �� is the cuto¤ denoting FI-H�s failure. First, as � ! 0 and � ! 0, it follows that

x� = y�, meaning that either all lenders (large and small) or none decides to withdraw. Clearly,

when FI-B is not actually constrained at T1, FI-H fails if and only if � � �� where �� = x� = y�.

Second, when FI-B is actually constrained, FI-H still fails if and only if � � �� where �� = x�. In

fact, if � > x�, all the small lenders stay on although the large lender is constrained and has to run,

which, however, is not su¢ cient to cause the failure of FI-H by recalling � � L
K . Therefore, overall,

the failure threshold is �� = x� = y� and, in particular, the failure threshold is not contingent on

whether FI-B is actually constrained at T1.

1. We consider two polar cases: q = 0 and q = 1.

Case 1: q = 0 (FI-B is not constrained)

Because � ! 0, equations (13) and (14) can be transformed into (A.10) and (A.11), respectively.(
L
K

1� � �H
�
x� � y�
�

�
+

L
K � �
1� �

�
1�H

�
x� � y�
�

��)
| {z }

Coordination risk

(KR � x�)| {z }
Fundamental risk

= K (A.10)

�=+1Z
�=x�

(KR � �)dH(� � y
�

�
) = K. (A.11)

Intuitively, in (A.10) the coordination risk is the weighted average of the coordination risk when

FI-B de�nitely does not run and when it de�nitely runs.

We will now prove that the solution of x� to the system of equations (A.10) and (A.11) when

� > 0 is lower than when � = 0. First, we look at � = 0. In this case, (A.10) becomes

L
K

1|{z}
Coordination risk

� (KR � x�)| {z }
Fundamental risk

= K (A.12)

Second, we examine the solution x� when � > 0. We consider an alternative equation to (A4):
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�=+1Z
�=x�

(KR � x�)dH(� � y
�

�
) = K (A.13)

We can verify that the system of equations of (A.10) and (A.13) has the exact same solution of x�

as in (A.12). In fact, (A.13) can be transformed to (KR � x�)(1�H(x
��y�
� )) = K. So the equation

system (A.10) and (A.13) has a unique solution which satis�es (A.12) and H(x
��y�
� ) = 1� L

K . Now

we examine the solution to the system of equations (A.10) and (A.11). Note that by comparing the

LHS of (A.11) and (A.13), we have
�=+1R
�=x�

(KR � �)dH( ��y
�

� ) >
�=+1R
�=x�

(KR � x�)dH( ��y
�

� ): Therefore,

the unique solution to (A.10) and (A.11) must have the following properties: x� is lower than that

in (A.12) and the solution satis�es H(x
��y�
� ) > 1� L

K . In fact, we can obtain the unique solution

to (A.10) and (A.11) by iteration. In the �rst step, we set the solution to (A.10) and (A.11) as the

initial trial. Clearly, with this trial, (A.11) is not satis�ed, given that x�, y� has to decrease. Then

go to (A.10); because y� goes down and thus H
�
x��y�
�

�
goes up (for a given x�), x� must decrease

to keep (A.10) valid. The decrease in x� further triggers the decrease in y� in (A.10), and so on.

By � ! 0, we have �� = x�. Therefore, �� is lower when � > 0 than when � = 0.

Now we prove that �� is decreasing in � when � is big enough. We examine equation (A.8) by

substituting q = 0. When � increases, there are two e¤ects. First, the lower bound of integral,

x� � �G�1(
L
K
1��), decreases, which has a positive e¤ect on the LHS of (A.8). Second, the integral

bound x� � �G�1(
L
K
��

1�� ) increases, which has a negative e¤ect on the LHS of (A.8). The second

e¤ect is negative because KR � � > (KR � �) �H( ��y
�

� ). However, the second e¤ect is diminishing

when � increases. In fact, 1 �H( ��y
�

� )j
�=x���G�1(

L
K
��

1�� )
= 1 �H(x

���G�1(
L
K
��

1�� )�y
�

� ) is decreasing

in �. Overall, when � is big enough, an increase in � raises the LHS of (A.8). Therefore, in order to

restore the equality, x� needs to decrease. That is, x� is a decreasing function of �. Under � ! 0,

�� is also decreasing in �.

Case 2: q = 1 (FI-B is de�nitely constrained)

Because q = 1, the small lenders�problem in equation (13) is rewritten as:Z +1

�1

�
I(�(�;x�)(1� �) + � � L

K
) � (KR � �)

�
g(�jx�)d� = K: (A.14)

As shown in the global games literature, in the limit � ! 0, the small lenders have no uncertainty

about the fundamentals �. However, no matter how small � is, they face strategic uncertainty. In

the eyes of the marginal small lender whose signal is x�, the aggregate fraction of small lenders
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withdrawing, �(�;x�), is always uniformly distributed within [0; 1]. So, equation (A.14) becomes:

L
K � �
1� �| {z }

Coordination risk

� (KR � x�)| {z }
Fundamental risk

= K: (A.15)

Solving equation (A.15) gives

x� =
1

R

1� �
L
K � �

. (A.16)

Since � ! 0, it follows that �� = x�, and �� increases with �. That is, for q = 1, in the limit as

� ! 0, FI-H�s failure threshold �� is increasing in �.39

2. We consider general cases of 0 � q � 1

In the proof of Lemma 3, we have shown that @x
�

@y� > 0 in (A.8), and that
@y�

@x� � 0 in (A.9). By

(A.8), we can also obtain that @x
�

@q = �
@Fs

@q
@Fs

@x�
> 0.

In the limit as � ! 0, � ! 0, and �
� ! c, we have �� = x�. So, ��(�; q) is increasing in q

(point-wisely).

The function ��(�; q) is continuous in both � and q. It is decreasing in � when q = 0 (under

a wide set of parameters) and increasing in � when q = 1. By continuity and ��(�; q) increasing

in q point-wisely, we conclude that ��(�; q) is increasing in � when q is su¢ ciently close to 1, and

decreasing in � when q is su¢ ciently close to 0.

Proof of Proposition 7: In the close set
�
(�; q)j� 2 [0;minf LK ; 1�

L
K g], q 2 [0; 1]

	
function

��(�; q) is continuous. So the optimization problem in (15) has solutions in the set � 2 [0;minf LK ; 1�
L
K g] . Under some parameter values and probability distribution z(q), it has a unique interior

solution (i.e., the optimal � lies in (0;minf LK ; 1�
L
K g)). The numerical example in the text is one

case. In fact, ��(�; q) is convex in � and increases very fast with � when q = 1. So if the probability

for q = 1 is not too low, it is not optimal to choose a very high �. On the other hand, if the

probability for q = 1 is su¢ ciently high, it is not optimal to choose � = 0. Overall, for a certain

distribution z(q), the optimal � is an interior solution.

Also, under some parameter values and probability distribution z(q), it is not optimal to choose

a � above minf LK ; 1�
L
K g. In fact, if � is too large, �

� is very high in the case of q = 1. In particular,

39For q = 1, under a general � > 0 away from the limit, we can still prove that x� and �� increase with �. In fact,

based on the proof of Lemma 3, when q = 1, (A.8) has a unique solution x� which is increasing in �. Also, when

q = 1, we have �� = x� � �G�1(
L
K
��

1�� ); so �
� is certainly increasing in �.
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when � is close to L
K , �

� approaches +1 in the case of q = 1 by (A.16).
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